精英家教网 > 高中数学 > 题目详情
P是椭圆=1上的任意一点,F1、F2是它的两个焦点,O为坐标原点,有一动点Q满足,则动点Q的轨迹方程是________.
=1
,设Q(x,y),
=2 =-2,∴=-.
又点P在椭圆=1上,∴=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知顶点为原点的抛物线的焦点与椭圆的右焦点重合在第一和第四象限的交点分别为.
(1)若△AOB是边长为的正三角形,求抛物线的方程;
(2)若,求椭圆的离心率
(3)点为椭圆上的任一点,若直线分别与轴交于点,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率与双曲线的离心率互为倒数,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(3)设第(2)问中的轴交于点,不同的两点上,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知对于任意实数k,直线(k+1)x+(k)y-(3k)=0恒过定点F.设椭圆C的中心在原点,一个焦点为F,且椭圆C上的点到F的最大距离为2+.
(1)求椭圆C的方程;
(2)设(mn)是椭圆C上的任意一点,圆Ox2y2r2(r>0)与椭圆C有4个相异公共点,试分别判断圆O与直线l1mxny=1和l2mxny=4的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆C=1(a>b>0)的左、右焦点分别为F1F2PC上的点,PF2F1F2,∠PF1F2=30°,则C的离心率为(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是椭圆上一动点,是椭圆的两个焦点,则的最大值为                  .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆y2=1的两个焦点为F1F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则|PF2|=(  ).
A.B.C.D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆为坐标原点.若为椭圆上一点,且在轴右侧,轴上一点,,则点横坐标的最小值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以椭圆的顶点为顶点,离心率为的双曲线方程(    )
A.B.
C.D.以上都不对

查看答案和解析>>

同步练习册答案