分析 (1)求出圆C的方程,利用圆C与圆D:x2+(y+1)2=4有公共点,可得不等式,即可求圆心C的横坐标a的取值范围.
(2)联立直线l与直线y=x-1解析式,求出方程组的解得到圆心C坐标,根据A坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k的方程,求出方程的解得到k的值,确定出切线方程即可;
解答 解:(1)∵圆C的圆心在在直线l:y=x-1上,所以,设圆心C为(a,2a-4)
则圆C的方程为:(x-a)2+[y-(2a-4)]2=1(2分)
因为圆C与圆D有公共点,所以1≤$\sqrt{{a}^{2}+[(2a-4)-(-1)]^{2}}$≤3,
解得,a的取值范围为:[0,2.4](5分)
(2)解:由$\left\{\begin{array}{l}{y=2x-4}\\{y=x-1}\end{array}\right.$得圆心C为(3,2),∵圆C的半径为1,
∴圆C的方程为:(x-3)2+(y-2)2=1(8分)
若k不存在,不合题意;
若k存在,设切线为:y=kx+3,可得圆心到切线的距离d=r,即$\frac{|3k+3-2|}{\sqrt{1+{k}^{2}}}$=1,
解得:k=0或k=-$\frac{3}{4}$,
则所求切线为y=3或y=-$\frac{3}{4}$x+3(12分)
点评 此题考查了圆的切线方程,点到直线的距离公式,以及圆与圆的位置关系的判定,涉及的知识有:两直线的交点坐标,直线的点斜式方程,两点间的距离公式,圆的标准方程,是一道综合性较强的试题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | S1+2S2=3S3 | B. | $\sqrt{{S}_{1}}$+$\sqrt{2{S}_{2}}$=$\sqrt{3{S}_{3}}$ | C. | $\sqrt{{S}_{1}}$+2$\sqrt{{S}_{2}}$=3$\sqrt{{S}_{3}}$ | D. | $\sqrt{{S}_{1}}$+4$\sqrt{{S}_{2}}$=9$\sqrt{{S}_{3}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}π$ | B. | $\frac{3}{2}π+\sqrt{3}$ | C. | $π+\sqrt{3}$ | D. | $\frac{5}{2}π+\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com