精英家教网 > 高中数学 > 题目详情
已知某公司生产品牌服装的年固定成本是10万元,每生产千件,须另投入2 7万元,设该公司年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且 
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获利润最大?(注:年利润=年销售收入 年总成本)
(1);(2)当x=9千件时,W取最大值38 6万元

试题分析:(1)本小题主要利用利润等于销售收入减去成本,再求解的时候注意分段函数的使用;(2)本小题主要利用分段函数分开求最值,针对三次函数用导数分析单调性,然后求最值;对于分式结构可以考虑用基本不等式求最值
试题解析:(1)当

                         7分   
(2)①当

               12分  
②当x>10时

当且仅当 
由①②知,当x=9千件时,W取最大值38 6万元             16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)求函数的单调区间
(2)若函数有两个零点,且,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数为奇函数,且,则                   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求,使价格连续下跌.现有三种价格模拟函数:①;②;③.(以上三式中均为常数,且
(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)
(2)若,求出所选函数的解析式(注:函数定义域是.其中表示8月1日,表示9月1日,…,以此类推);
(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数满足 在上恒成立.
(1)求的值;
(2)若,解不等式
(3)是否存在实数,使函数在区间上有最小值?若存在,请求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数,若实数满足,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的零点位于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若实数满足,则称是函数的一个次不动点.设函数与函数的所有次不动点之和为,则____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,则___.

查看答案和解析>>

同步练习册答案