精英家教网 > 高中数学 > 题目详情
8.已知等差数列{an}的前n项的和为Sn,若S15>0,S16<0,则在数列{an}中绝对值最小的项为(  )
A.a7B.a8C.a9D.a10

分析 由${S}_{15}=\frac{15({a}_{1}+{a}_{15})}{2}$>0,得a8>0,由${S}_{16}=\frac{15({a}_{1}+{a}_{16})}{2}=\frac{15}{2}({a}_{8}+{a}_{9})<0$,得a8+a9<0,由此能求出在数列{an}中绝对值最小的项.

解答 解:∵等差数列{an}的前n项的和为Sn,S15>0,S16<0,
∴${S}_{15}=\frac{15({a}_{1}+{a}_{15})}{2}$=$\frac{30{a}_{8}}{2}$>0,∴a8>0,
∵${S}_{16}=\frac{15({a}_{1}+{a}_{16})}{2}=\frac{15}{2}({a}_{8}+{a}_{9})<0$,
∴a8+a9<0,∴a9<0,
∴数列{an}为减列,且a1>a2>…>a8>0>a9>a10>…,
∵∴a8+a9<0,∴|a8|<|a9|,
∴在数列{an}中绝对值最小的项为a8
故选:B.

点评 本题考查等差数列中绝对值最小的项的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知曲线C的参数方程为$\left\{{\begin{array}{l}{x=2cosα-1}\\{y=\sqrt{3}sinα}\end{array}}\right.$(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)若直线l的参数方程为$\left\{{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}}\right.$,其中t为参数,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)当m=-1时,求A∪B;
(2)若A⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,已知PA与圆O相切于点A,经过圆心O的割线PBC交圆O于点B,C,AC=AP,则$\frac{PC}{AC}$的值为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a,b满足a2+b2=4,则$\sqrt{(a-3)^{2}+(b-4)^{2}}$的最小值与最大值分别为(  )
A.3,7B.3,5C.5,7D.2$\sqrt{2}$,5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象,如图所示.
(1)求函数解析式;(2)若方程f(x)=m在[-$\frac{π}{12}$,$\frac{13π}{12}$]有两个不同的实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系中,已知射线OA:x-y=0(x≥0),OB:2x+y=0(x≥0).过点P(1,0)作直线分别交射线OA,OB于点A,B.
(1)当AB的中点在直线x-2y=0上时,求直线AB的方程;
(2)当△AOB的面积取最小值时,求直线AB的方程.
(3)当PA•PB取最小值时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图为某四面体的三视图(都是直角三角形),则此四面体的表面三角形为直角三角形的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某市对居民在某一时段用电量(单位:度)进行调查后,为对数据进行分析统计,按照数据大、小将数据分成A、B、C三组,如表所示:
 分组 A B C
 用电量 (0,80] (80,250] (250,+∞)
从调查结果中随机抽取了10个数据,制成了如图的茎叶图:
(Ⅰ)写出这10个数据的中位数和极差;
(Ⅱ)从这10个数据中任意取出3个,其中来自B组的数据个数为ξ,求ξ的分布列和数学期望;
(Ⅲ)用抽取的这10个数据作为样本估计全市的居民用电量情况,从全市依次随机抽取20户,若抽到n户用电量为B组的可能性较大,求n的值.

查看答案和解析>>

同步练习册答案