精英家教网 > 高中数学 > 题目详情
3.已知a,b满足a2+b2=4,则$\sqrt{(a-3)^{2}+(b-4)^{2}}$的最小值与最大值分别为(  )
A.3,7B.3,5C.5,7D.2$\sqrt{2}$,5

分析 a2+b2=4表示以(0,0)为圆心,2为半径的圆,$\sqrt{(a-3)^{2}+(b-4)^{2}}$表示(a,b)与(3,4)的距离,求出圆心距,即可得出结论.

解答 解:a2+b2=4表示以(0,0)为圆心,2为半径的圆,
$\sqrt{(a-3)^{2}+(b-4)^{2}}$表示(a,b)与(3,4)的距离,
圆心(0,0)与(3,4)的距离是$\sqrt{9+16}$=5
∴$\sqrt{(a-3)^{2}+(b-4)^{2}}$的最小值是5-2=3,最大值是5+2=7.
故选:A.

点评 本题考查圆的方程,考查距离公式的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知实数a>0,b>0,函数f(x)=|x-a|-|x+b|的最大值为3.
(I) 求a+b的值;
(Ⅱ)设函数g(x)=-x2-ax-b,若对于?x≥a均有g(x)<f(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.与点A(4,3),B(5,2),C(1,0)距离都相等的点的坐标为(3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\sqrt{2x+1}$在点(0,1)处的切线方程x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E,F,点G是AD的中点
(1)求证:GE是⊙O的切线;
(2)若GE=BD=2,EC=$\frac{9}{5}$,求BC值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等差数列{an}的前n项的和为Sn,若S15>0,S16<0,则在数列{an}中绝对值最小的项为(  )
A.a7B.a8C.a9D.a10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解方程$\frac{a-x}{b+x}$=5-$\frac{4(b+x)}{a-x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线被圆x2+y2-6x+5=0截得的弦长为2,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{3}{2}$C.$\sqrt{6}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示的程序框图中输出的结果为(  )
A.2B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案