精英家教网 > 高中数学 > 题目详情
已知双曲线an-1y2-anx2=an-1an的焦点在y轴上,一条渐近线方程为,其中{an}是以4为首项的正数数列,则数列{an}的通项公式是( )
A.
B.an=21-n
C.an=4n-2
D.an=2n+1
【答案】分析:将双曲线化为标准形式,写出渐近线方程,得到数列相邻2项的关系,判断数列特征,据数列特征求其通项公式.
解答:解:双曲线即:-=1,
∵{an}是以4为首项的正数数列,一条渐近线方程为
==2,∴an=4•2n-1=2n+1
故答案 D
点评:本题考查双曲线方程、等比数列的通项公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线an-1y2-anx2=an-1an的焦点在y轴上,一条渐近线方程为y=
2
x
,其中{an}是以4为首项的正数数列,则数列{an}的通项公式是(  )
A、an=2
n+3
2
B、an=21-n
C、an=4n-2
D、an=2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线an-1y2-anx2=an-1an的一个焦点(0,
cn
)
,一条渐近线方程为y=
2
x
,其中an是以4为首项的正项数列,数列cn的首项为6.
(Ⅰ)求数列Cn的通项公式;
(Ⅱ)若不等式
1
c1
+
2
c2
+…+
n
cn
+
n
3•2n
2
3
+loga(2x+1)(a>0且a≠1)
对一切自然数n恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线an-1y2-anx2=an-1an的一个焦点为(0,
cn
)(n≥2)
,且c1=6,一条渐近线方程为y=
2
x
,其中{an}是以4为首项的正数数列,记Tn=a1c1+a2c2+…+ancn(n∈N*).
(1)求数列{cn}的通项公式;
(2)数列{cn}的前n项和为Sn,求
lim
n→∞
S
2
n
Tn

(3)若不等式
1
c1
+
2
c2
+…+
n
cn
+
n
3•2n
1
3
+loga(2x+1)(a>0,a≠1)
对一切自然数n(n∈N*)恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年重庆市南开中学高三(下)3月月考数学试卷(理科)(解析版) 题型:解答题

已知双曲线an-1y2-anx2=an-1an的一个焦点为,且c1=6,一条渐近线方程为,其中{an}是以4为首项的正数数列,记Tn=a1c1+a2c2+…+ancn(n∈N*).
(1)求数列{cn}的通项公式;
(2)数列{cn}的前n项和为Sn,求
(3)若不等式对一切自然数n(n∈N*)恒成立,求实数x的取值范围.

查看答案和解析>>

同步练习册答案