精英家教网 > 高中数学 > 题目详情
精英家教网如图,正三棱锥S-ABC中,∠BSC=40°,SB=2,一质点自点B出发,沿着三棱锥的侧面绕行一周回到点B的最短路线的长为(  )
A、2
B、3
C、2
3
D、3
3
分析:画出解答几何体的部分侧面展开图,利用三角形的边的关系容易解得边长的值,从而得出其中的最小值.
解答:精英家教网解:将三棱锥S-ABC沿侧棱SB展开,
其侧面展开图如图所示,由图中红色路线可得结论.
根据余弦定理得,沿着三棱锥的侧面绕行一周回到点B的最短路线的长为:
4+4+2×2×2×
1
2
=2
3

故选C.
点评:本题考查多面体和旋转体表面上的最短距离问题,空间想象能力,几何体的展开与折叠,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正三棱锥S-ABC中,侧面SAB与底面ABC所成的二面角等于α,动点P在侧面SAB内,PQ⊥底面ABC,垂足为Q,PQ=PS•sinα,则动点P的轨迹为(  )
A、线段B、圆C、一段圆弧D、一段抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱锥S-ABC的侧面是边长为a的正三角形,D是SA的中点,E是BC的中点,求△SDE绕直线SE旋转一周所得到的旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱锥S-ABC中,底面的边长是3,棱锥的侧面积等于底面积的2倍,M是BC的中点.
求:(1)
AMSM
的值;
(2)二面角S-BC-A的大小;
(3)正三棱锥S-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过正三棱锥S—ABC的侧棱SB与底面中心O作截面SBD,已知截面是等腰三角形,则侧面与底面所成角的余弦值为(    )

A.                                   B.

C.                         D.

查看答案和解析>>

同步练习册答案