| A. | 12 | B. | 8 | C. | $8\sqrt{3}$ | D. | 36 |
分析 设P到AC的距离为x,到BC的距离为y,根据比例线段的性质可知$\frac{x}{6}=\frac{8-y}{8}$,整理求得y=8-$\frac{4}{3}$x,进而可求得xy的表达式根据二次函数的性质求得答案.
解答
解:如图,设P到AC的距离为x,到BC的距离为y,$\frac{x}{6}=\frac{8-y}{8}$,
即最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,所以4x=24-3y,y=8-$\frac{4}{3}$x
求xy最大,也就是那个矩形面积最大.
xy=x•(8-$\frac{4}{3}$x)=-$\frac{4}{3}$(x2-6x),当x=3时,xy有最大值12
故选A.
点评 本题主要考查了解三角形的问题.考查了学生转化和化归思想,函数思想的运用.考查了学生分析问题和解决问题的能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(4)<f(-1)<f($\frac{11}{2}$) | B. | f(-1)<f(4)<f($\frac{11}{2}$) | C. | f($\frac{11}{2}$)<f(4)<f(-1) | D. | f(-1)<f($\frac{11}{2}$)<f(4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | k<-3或k>2 | B. | -3<k<2 | C. | k>2 | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com