精英家教网 > 高中数学 > 题目详情

如图,在平行六面体ABCD-A1B1C1D1中,AB=4,AD=3,AA1=5,∠BAD=90°,
∠BAA1=∠DAA1=60°.
(1)求AC1的长;
(2)设直线AC1与平面A1DB交于点G,求证:数学公式

(1)解:∵
==85,

(2)证明:由A,G,C1三点共线知,存在λ∈R,
使得
由B,D,A1,G四点共面知,存在x,y,z∈R,
使得,且x+y+z=1
由空间向量基本定理,得x=y=z=λ,


分析:(1)由,知==85,由此能求出AC1的长.
(2)由A,G,C1三点共线知,存在λ∈R,使得.由B,D,A1,G四点共面知,存在x,y,z∈R,使得,且x+y+z=1,由此能够证明
点评:本题考查线段长度的求法和证明线段间的数量关系,解题时要认真审题,仔细解答,注意化空间问题为平面问题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图:在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若
AB
=
a
AD
=
b
AA1
=
c
,则下列向量中与
BM
相等的向量是(  )
A、-
1
2
a
+
1
2
b
+
c
B、
1
2
a
+
1
2
b
+
c
C、-
1
2
a
-
1
2
b
+
c
D、
1
2
a-
1
2
b+c

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平行六面体ABCD-A1B1C1D1中,已知
AB
=a
AD
=b
AA1
=c
,则用向量
a
b
c
可表示向量
BD1
=(  )
A、
a
+
b
+
c
B、
a
-
b
+
c
C、
a
+
b
-
c
D、-
a
+
b
-
c

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网对于向量a,b,定义a×b为向量a,b的向量积,其运算结果为一个向量,且规定a×b的模|a×b|=|a||b|sinθ(其中θ为向量a与b的夹角),a×b的方向与向量a,b的方向都垂直,且使得a,b,a×b依次构成右手系.如图,在平行六面体ABCD-EFGH中,∠EAB=∠EAD=∠BAD=60°,AB=AD=AE=2,则(
AB
×
AD
)•
AE
=(  )
A、4
B、8
C、2
2
D、4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平行六面体ABCD-A1B1C1D1中,若
AB
=
a
AD
=
b
AA1
=
c
,则
D1B
=(  )
A、
a
+
b
-
c
B、
a
+
b
+
c
C、
a
-
b
-
c
D、-
a
+
b
+
c

查看答案和解析>>

科目:高中数学 来源: 题型:

(2001•上海)如图,在平行六面体ABCD-A1B1C1D1中,M为AC与BD的交点,若
A1B1
=
a
A1D1
=
b
A1A
=
c
.则下列向量中与
B1M
相等的向量是(  )

查看答案和解析>>

同步练习册答案