精英家教网 > 高中数学 > 题目详情
已知双曲线C的两个焦点的坐标为为F1(-6,0),F2(6,0),且经过点P(-5,2).
(1)求双曲线C的标准方程;
(2)求以双曲线C的左顶点为焦点的抛物线的标准方程.
考点:双曲线的标准方程,抛物线的标准方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:(1)双曲线的定义,求出a,代入P的坐标,即可求双曲线C的标准方程;
(2)求出双曲线C的左顶点,可得抛物线的焦点,即可求出抛物线的标准方程.
解答: 解:(1)设双曲线的方程为
x2
a2
-
y2
b2
=1(a>0,b>0),
由双曲线的定义得2a=||PF1|-|PF2||=|
5
-5
5
|=4
5

所以a=2
5
,b2=36-a2=16,
所以所求双曲线的方程为
x2
20
-
y2
16
=1…(7分)
(2)由(1)得,双曲线
x2
20
-
y2
16
=1的左顶点坐标为A(-2
5
,0)

设抛物线的标准方程为y2=-2px(p>0).
因为双曲线C的左顶点为抛物线的焦点,所以
p
2
=2
5
,即p=4
5

所以所求抛物线的标准方程为y2=-8
5
x
点评:本题考查抛物线、双曲线的标准方程,考查双曲线的定义域性质,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)上两点A、B与中心O的连线互相垂直,则
1
OA2
+
1
OB2
的值为(  )
A、
1
a2+b2
B、
1
a2b2
C、
a2b2
a2+b2
D、
a2+b2
a2b2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C三点共线,且满足m
OA
-2
OB
+
OC
=
0
,则(  )
A、A是BC的中点
B、B是AC的中点
C、C是AB的三等分点
D、A是CB的三等分点

查看答案和解析>>

科目:高中数学 来源: 题型:

某校在两个班进行教学方式对比试验,两个月后进行了一次检测,试验班与对照班成绩统计如2×2列联表所示(单位:人).
 80及80分以上80分以下合计
试验班351550
对照班20m50
合计5545
(1)求m,n;
(2)你有多大把握认为“教学方式与成绩有关系”?
参考公式及数据:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

其中n=a+b+c+d为样本容量.
p(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:

若点O和点F分别为椭圆
x2
4
+
y2
3
=1的中心和左焦点,点P为椭圆上的任意一点,则
OP
FP
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,1),B(1,-1),C(
2
cosθ,
2
sinθ)(θ∈R),O为坐标原点.
(1)若实数m,n满足m
OA
+n
OB
=2
OC
,求m2+n2
(2)问原点O能否成为△ABC的重心?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x2-ax-3是偶函数.
(1)试确定a的值,及此时的函数解析式;
(2)证明函数f(x)在区间(-∞,0)上是减函数;
(3)当x∈[-2,0]时,求函数f(x)=2x2-ax-3的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)分析证明函数f(x)=lg
1-x
1+x
的奇偶性;
(2)写出f(x)=-x2+2x的减函数区间,并证明y=f(x)在它上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校设计了一个实验考察方案:考生从6道备选题中一次性随机抽取3道题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2道题的便可通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是
2
3
,且每题正确完成与否互不影响.
(Ⅰ)求甲、乙两考生正确完成题数的概率分布列,并计算其数学期望;
(Ⅱ)请分析比较甲、乙两考生的实验操作能力.

查看答案和解析>>

同步练习册答案