精英家教网 > 高中数学 > 题目详情
设f(x)是定义在(-π,0)∪(0,π)上的奇函数,其导函数为f′(x),当0<x<π时,f′(x)•cosx-sinx•f(x)>0,则不等式f(x)•cosx<0的解集为
(-π,-
π
2
)∪(0,
π
2
)
(-π,-
π
2
)∪(0,
π
2
)
分析:根据[f(x)cosx]′=f'(x)•cosx-sinx•f(x),据已知条件及导函数符号与函数单调性的关系判断出f(x)cosx的单调性,容易得到函数f(x)cosx的两个零点,根据函数的单调性求出不等式的解集.
解答:解:设g(x)=f(x)cosx,
∵f(x)是定义在(-π,0)∪(0,π)上的奇函数,
故g(-x)=f(-x)cos(-x)=-f(x)cosx=-g(x),
∴g(x)是定义在(-π,0)∪(0,π)上的奇函数.
g'(x)=f'(x)cosx-sinxf(x)>0,
∴g(x)在(0,π)上递增,
于是奇函数g(x)在(-π,0)递增.
∵g(±
π
2
)=0
∴f(x)•cosx<0的解集为(-π,-
π
2
)∪(0,
π
2
)

故答案为:(-π,-
π
2
)∪(0,
π
2
)
点评:求抽象不等式的解集,一般能够利用已知条件判断出函数的单调性,再根据函数的单调性将抽象不等式转化为具体函的不等式解之.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=
12
对称,则f(1)+f(2)+f(3)+f(4)+f(5)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

例2.设f(x)是定义在[-3,
2
]上的函数,求下列函数的定义域(1)y=f(
x
-2)
(2)y=f(
x
a
)(a≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在[-1,1]上的奇函数,g(x)的图象与f(x)的图象关于直线x=1对称,而当x∈[2,3]时,g(x)=-x2+4x-4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)对任意x1,x2∈[0,1],且x1≠x2,求证:|f(x2)-f(x1)|<2|x2-x1|;
(Ⅲ)对任意x1,x2∈[0,1],且x1≠x2,求证:|f(x2)-f(x1)|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图象,则f(2013)+f(2014)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江一模)设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x-2)=f(x+2)且当x∈[-2,0]时,f(x)=(
1
2
x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是
34
,2)
34
,2)

查看答案和解析>>

同步练习册答案