精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数.
(1)求闭函数符合条件②的区间[];
(2)判断函数是否为闭函数?并说明理由;
(3)若函数是闭函数,求实数的取值范围.
(1)[-1,1]。(2)函数在定义域内不单调递增或单调递减,从而该函数不是闭函数。(3)

试题分析:(1)根据y=-x3的单调性,假设区间为[a,b]满足,求a、b的值.
(2)取一特殊值x1=1,x2=10,代入验证不满足条件即可证明不是闭函数.
(3)根据闭函数的定义,得到a,b,k的关系式,然后转换为方程有两个不等的实数根来得到参数的范围。
解:
(1)由题意,在[]上递减,则解得
所以,所求的区间为[-1,1]..............................................2分
(2)

不是上的减函数。

不是上的增函数,
所以,函数在定义域内不单调递增或单调递减,从而该函数不是闭函数。.............4分
(3)若是闭函数,则存在区间[],在区间[]上,函数的值域为[],即为方程的两个实根,
即方程有两个不等的实根。
时,有,解得。...............................7分
时,有,无解。........................................10分
综上所述,....................................12分
点评:解决该试题的关键是理解闭函数的概念,并能结合所学知识,转换为不等式以及对应的函数关系式。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知函数
(1)是否存在实数使函数f(x)为奇函数?证明你的结论;
(2)用单调性定义证明:不论取任何实数,函数f(x)在其定义域上都是增函数;
(3)若函数f(x)为奇函数,解不等式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是定义在上的奇函数,当时,,则在的表达式为                         
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知
(Ⅰ)求
(Ⅱ)判断并证明的奇偶性与单调性;
(Ⅲ)若对任意的,不等式恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)设为非负实数,函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知  
(1)求的值;
(2)当(其中,且为常数)时,是否存在最小值,如果存在求出最小值;如
果不存在,请说明理由;
(3)当时,求满足不等式的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(Ⅰ)若在定义域内存在,使不等式能成立,求实数的最小值;
(Ⅱ)若函数在区间上恰有两个不同的零点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数
(1)当x∈[2,4]时.求该函数的值域;
(2)若恒成立,求m的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列图像中,能表示函数图像的是(      )

A                   B                C                 D

查看答案和解析>>

同步练习册答案