精英家教网 > 高中数学 > 题目详情
若a>0,b>0,2a+b=2,则下列不等式:
①ab≤1;②
2a
+
b
≤2
;③a2+b2≥2;④8a3+b3≥3;⑤
1
a
+
1
b
≥2

对一切满足条件的a,b成立的是(  )
分析:①由于a>0,b>0,2a+b=2,利用基本不等式可得2≥2
2ab
,即可判断出是否成立;
②由于a>0,b>0,2a+b=2,利用基本不等式可得(
2a
+
b
)2
≤2[(
2a
)2+(
b
)2]
=2(2a+b)=4,即可判断出;
③利用a2+b2=a2+(2-2a)2=5(a-
4
5
)2+
4
5
4
5
,当且仅当a=
4
5
时取等号,可知最小值为
4
5

④由①可知:2ab<1,k可得-6ab>-3.利用立方差公式可得8a3+b3=(2a+b)(4a2+b2-2ab)=(2a+b)[(2a+b)2-6ab]=2(4-6ab)>2×(4+3)=14,即可判断出;
⑤由于a>0,b>0,2a+b=2,利用基本不等式可得
1
a
+
1
b
=
1
2
(2a+b)(
1
a
+
1
b
)
=
1
2
(3+
b
a
+
2a
b
)
1
2
(3+2
b
a
2a
b
)
=
1
2
(3+2
2
)
,即可判断出.
解答:解:①∵a>0,b>0,2a+b=2,∴2≥2
2ab
,∴ab≤
1
2
<1
,因此成立;
②∵a>0,b>0,2a+b=2,∴(
2a
+
b
)2
≤2[(
2a
)2+(
b
)2]
=2(2a+b)=4,∴
2a
+
b
≤2
,故成立;
③∵a2+b2=a2+(2-2a)2=5(a-
4
5
)2+
4
5
4
5
,当且仅当a=
4
5
时取等号,可知③不成立.
④由①可知:2ab<1,∴-6ab>-3.
∴8a3+b3=(2a+b)(4a2+b2-2ab)=(2a+b)[(2a+b)2-6ab]=2(4-6ab)>2×(4+3)=14,故④不成立;
⑤∵a>0,b>0,2a+b=2,∴
1
a
+
1
b
=
1
2
(2a+b)(
1
a
+
1
b
)
=
1
2
(3+
b
a
+
2a
b
)
1
2
(3+2
b
a
2a
b
)
=
1
2
(3+2
2
)
,当且仅当b=
2
a
=2(
2
-1)
时取等号.
1
2
(3+2
2
)>2
,因此⑤成立.
综上可知:只有①②⑤正确.
故选B.
点评:本题考查了基本不等式的性质,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a<0,b>0,那么下列不等式中正确的是(  )
A、2a22b2
B、log2
-a
<log2
b
C、log
1
2
|a|>log
1
2
|b|
D、2-
1
a
2-
1
b

查看答案和解析>>

科目:高中数学 来源: 题型:

18、给出下列命题:
①变量y与x之间的相关系数r=-0.9568,查表到相关系数的临界值为r0.05=0.8016,则变量y与x之间具有线性关系;
②a>0,b>0则不等式a3+b3≥3ab2恒成立;
③对于函数f(x)=2x2+mx+n.若f(a)>0.f(b)>0,则函数在(a,b)内至多有一个零点;
④y=f(x-2)与y=f(2-x)的图象关于x=2对称.其中所有正确命题的序号是
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

14、给出下列命题:
(1)若实数x满足log2009x=2009-x,则有x2>x>1成立;
(2)若a>0,b>0,则不等式a3+b3≥3ab2恒成立;
(3)对于函数f(x)=2x2+mx+n,若f(a)>0,f(b)>0,则函数在(a,b)内至多有一零点;
(4)函数y=f(x-2)与y=f(2-x)的图象关于直线x=2对称;
则其中所有正确命题的序号是
(1),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)定义“正数对”:ln+x=
0,  0<x<1
lnx,    x≥1
,现有四个命题:
①若a>0,b>0,则ln+(ab)=bln+a;
②若a>0,b>0,则ln+(ab)=ln+a+ln+b;
③若a>0,b>0,则ln+(
a
b
)≥ln+a-ln+b

④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+2.
其中的真命题有
①③④
①③④
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是(  )
①ab≤1;     ②
a
+
b
2
;     ③a2+b2≥2;     ④
1
a
+
1
b
≥2.

查看答案和解析>>

同步练习册答案