精英家教网 > 高中数学 > 题目详情

定义在R上的奇函数f(x)有最小正周期4,且x∈(0,2)时,f(x)=数学公式.求f(x)在[-2,2]上的解析式.

解:当-2<x<0时,0<-x<2
∵x∈(0,2)时,f(x)=
∴f(-x)==
又f(x)为奇函数,f(x)=-f(-x)=-
当x=0时,由f(-0)=-f(0),∴f(0)=0,又f(x)的最小正周期4,
∴f(-2)=f(-2+4)=f(2),∴f(-2)=f(2)=0
综上,f(x)=
分析:当-2<x<0时,0<-x<2,利用x∈(0,2)时,f(x)=,可得f(x)=-f(-x)=-,当x=0时,由f(-0)=-f(0),可得f(0)=0,又f(x)的最小正周期4,可得f(-2)=f(2)=0,由此可求f(x)在[-2,2]上的解析式.
点评:本题考查函数的解析式,考查函数的奇偶性,解题的关键是掌握求哪设哪的原则.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足f(2x)=-2f(x),f(-1)=
1
2
,则f(2)的值为(  )
A、-1B、-2C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则不等式xf(x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在[0,+∞)是增函数,判断f(x)在(-∞,0)上的增减性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:当x>0时,f(x)=2010x+log2010x,则方程f(x)=0的实根的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x),当x≥0时,f(x)=x3+x2,则f(x)=
x3+x2    x≥0
 
x3-x2     x<0
x3+x2    x≥0
 
x3-x2     x<0

查看答案和解析>>

同步练习册答案