精英家教网 > 高中数学 > 题目详情
已知数列{an}是首项为a等于1且公比q不等于1的等比数列,Sn是其前n项的和,a1,2a7,3a4成等差数列.
(1) 求和 Tn=a1+a4+a7+…+a3n-2
(2) 证明 12S3,S6,S12-S6成等比数列.
分析:由题意a1,2a7,3a4成等差数列可得4a7=a1+3a4,由于问题中两个问题都只和公比的三次方有关,故从此等式中解出公比的三次方即可,
(1)是等比数列中项的序号为3的倍数n个项的和,它们组成一个新的等比数列,公比为原来数列公比的三次方,由求和公式求和即可.
(2)证明三数成等比数列,需要先求出前必项和公式,然后将公式代入由等比关系转化成的方程进行验证证明即可.
解答:解:由a1,2a7,3a4成等差数列,
得4a7=a1+3a4,即4aq6=a+3aq3
变形得(4q3+1)(q3-1)=0,所以q3=-
1
4
,或q3=1(舍去).
(1)Tn=a1+a4+a7++a3n-2
=1+q3+q6++q3n-3=
1-q3n
1-q3
=
4
5
[1-(-
1
4
)n]

(2)由
S6
12S3
=
a1(1-q6)
1-q
12a1(1-q3)
1-q
=
1+q3
12
=
1
16

S12-S6
S6
=
S12
S6
-1=
a1(1-q12)
1-q
a1(1-q6)
1-q
-1

=1+q6-1=q6=
1
16
=
S6
12S3

所以12S3,S6,S12-S6成等比数列.
点评:本题考查数列前n项和公式及其有关的综合题,属于等比数列的性质灵活运用题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是首项为3,公差为2的等差数列,其前n项和为Sn,数列{bn}为等比数列,且b1=1,bn>0,数列{ban}是公比为64的等比数列.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求证:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=
1
4
的等比数列,其前n项和Sn中S3,S4,S2成等差数列,
(1)求数列{an}的通项公式;
(2)设bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求证:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1的等差数列,且公差不为零,而等比数列{bn}的前三项分别是a1,a2,a6
(I)求数列{an}的通项公式an
(II)若b1+b2+…bk=85,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1,公差为2的等差数列,又数列{bn}的前n项和Sn=nan
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若cn=
1bn(2an+3)
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=a,公差为2的等差数列,数列{bn}满足2bn=(n+1)an
(1)若a1、a3、a4成等比数列,求数列{an}的通项公式;
(2)若对任意n∈N*都有bn≥b5成立,求实数a的取值范围;
(3)数列{cn}满足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,当a=-20时,求f(n)的最小值(n∈N*).

查看答案和解析>>

同步练习册答案