精英家教网 > 高中数学 > 题目详情

数列1,1+2,…,1+2+22+…+2n-1,…的一个通项an等于(  )

A.2n-1                                    B.2n+1n-2

C.2n-1                                     D.2nn

解析:选A.通项an=1+2+22+…+2n-1=2n-1.或代入检验第一项为1,第二项为3,即可排除B,C,D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、某资料室在计算机使用中,如表所示,编码以一定规则排列,且从左至右以及从上到下都是无限的.此表中,主对角线上数列1,2,5,10,17,…的通项公式为
an=n2-2n+2(n∈N+
;编码100共出现
6
次.
1 1 1 1 1 1
1 2 3 4 5 6
1 3 5 7 9 11
1 4 7 10 13 16
1 5 9 13 17 21
1 6 11 16 21 26

查看答案和解析>>

科目:高中数学 来源: 题型:

数列-1,
8
5
,-
15
7
24
9
,…的一个通项公式an是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=2n-1+1.
(1)若Sn=a1Cn0+a2Cn1+a3Cn2+…+an+1Cnn,(n∈N*),求证:当n为偶数时,Sn-2n-4n-1能被64整除.
(2)是不是存在等差数列{bn},使得b1Cn1+b2Cn2+…+bnCnn=n(an-1)对一切n∈N*都成立?若存在,求数列{bn}的通项公式;若不存在,则请说明理由.
(3)记Tn=1!Cn1+2!Cn2+3!Cn3+…+n!Cnn(n=1,2,3,…),当n≥2时,求证:(1+
1
T1
)(1+
1
T2
)(1+
1
T3
)…(1+
1
Tn
)≤3-
1
1+log2(an-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列推理中属于归纳推理且结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区模拟)直线l1:y=kx+1-k(k≠0,k≠±
1
2
)与l2:y=
1
2
x+
1
2
相交于点P.直线l1与x轴交于点P1,过点P1作x轴的垂线交直线l2于点Q1,过点Q1作y轴的垂线交直线l1于点P2,过点P2作x轴的垂线交直线l2于点Q2,…,这样一直作下去,可得到一系列点P1,Q1,P2,Q2,…,点Pn(n=1,2,…)的横坐标构成数列{xn}.
(1)当k=2时,求点P1,P2,P3的坐标并猜出点Pn的坐标;
(2)证明数列{xn-1}是等比数列,并求出数列{xn}的通项公式;
(3)比较2|PPn|2与4k2|PP1|2+5的大小.

查看答案和解析>>

同步练习册答案