精英家教网 > 高中数学 > 题目详情
6.已知等比数列{an}的公比为q,且q≠1,a1=2,3a1,2a2,a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}是一个首项为-6,公差为2的等差数列,求数列{an+bn}的前n项和.

分析 (Ⅰ)根据等差数列的性质可即可得到关于q的方程解得即可,
(Ⅱ)根据等比数列和等差数列的前n项和公式计算即可.

解答 解:(Ⅰ)因为3a1,2a2,a3成等差数列,
所以4a2=3a1+a3.                
所以$4{a_1}q=3{a_1}+{a_1}{q^2}$.
所以q2-4q+3=0.
所以q=3或q=1(舍).                                   
所以${a_n}=2•{3^{n-1}}$.
(Ⅱ)bn=-6+(n-1)•2=2n-8.
所以${a_n}+{b_n}=2n-8+2•{3^{n-1}}$.
所以Sn=(a1+a2+…+an)+(b1+b2+…+bn
=$\frac{n(-6+2n-8)}{2}+\frac{{2(1-{3^n})}}{1-3}$=n2-7n+3n-1.

点评 本题考查{an}的公比q及通项公式an的求法,考查数列的前n项和的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若集合A={2,3},B={x|x2-5x+6=0},则A∩B=(  )
A.{x=2,x=3}B.{(2,3)}C.{2,3}D.2,3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,若E为AB的中点,则点E到面ACD1的距离是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{dn}的前n项和${S_n}={n^2}+n$,且d2,d4为等比数列数列{an}的第2、3项.
(1)求{an}的通项方式;
(2)设${b_n}=\frac{n}{a_n}$,求证:b1+b2+…+bn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.六名同学A、B、C、D、E、F举行象棋比赛,采取单循环赛制,即参加比赛的每两个人之间仅赛一局.第一天,A、B各参加了3局比赛,C、D各参加了4局比赛,E参加了2局比赛,且A与C没有比赛过,B与D也没有比赛过.那么F在第一天参加的比赛局数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=\frac{1}{3}{x^3}+a{x^2}+(2a-1)x(a∈R)$.
(Ⅰ)若f(x)在点(0,0)处的切线方程为y=x,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当a=-1时,设f(x)在x1,x2(x1<x2)处取到极值,记M(x1,f(x1)).A(0,f(0)),B(1,f(1)),C(2,f(2)),判断直线AM、BM、CM与函数f(x)的图象各有几个交点(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx-a•sin(x-1),其中a∈R.
(Ⅰ)如果曲线y=f(x)在x=1处的切线的斜率是-1,求a的值;
(Ⅱ)如果f(x)在区间(0,1)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设公比不为1的等比数列{an}满足${a_1}{a_2}{a_3}=-\frac{1}{8}$,且a2,a4,a3成等差数列,则数列{an}的前4项和为$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.六个学习小组依次编号为1、2、3、4、5、6,每组3人,现需从中任选3人组成一个新的学习小组,则3人来自不同学习小组的概率为(  )
A.$\frac{5}{204}$B.$\frac{45}{68}$C.$\frac{15}{68}$D.$\frac{5}{68}$

查看答案和解析>>

同步练习册答案