精英家教网 > 高中数学 > 题目详情
(满分12分)
如图,在正方体中,E、F、G分别为的中点,O为的交点,
(1)证明:
(2)求直线与平面所成角的正弦值.
(1)证明:因为
所以   
从而 
中 
  从而 
即  ………2分
又因为       
所以     ………4分
又因为            
故   
又因为       
所以  ………6分
(2)解:如右图,连接
        
由(1)知,
故 即为直线与平面所成角………8分
设正方体的棱长为1 ,则

在Rt中,有    故 ==………10分
所以 ………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCDPD=CDEPC的中点。

(1)证明PA平面BDE
(2)求二面角B-DE-C的平面角的余弦值;
(3)在棱PB上是否存在点F,使PB⊥平面DEF?
证明你的结论。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知三棱柱的三视图如图所示,其中正视图和侧视图均为矩形,俯视图中,
(I)在三棱柱中,求证:
(II)在三棱柱中,若是底边
的中点,求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为空间四点.在中,.等
边三角形为轴运动.
(Ⅰ)当平面平面时,求
(Ⅱ)当转动时,是否总有?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥PABCD中,底面ABCD是菱形,∠BADAB=2,PA=1,PA⊥平面ABCDEPC的中点,FAB的中点.

(1)求证:BE∥平面PDF
(2)求证:平面PDF⊥平面PAB
(3)求三棱锥PDEF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角梯形ABCD中, A为PD的中点,如下图,
将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,

(1)求证:SA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值;
(3)在线段BC上是否存在点F,使SF//平面EAC?若存在,确定F点的位置,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图S为正三角形所在平面ABC外一点,且SASBSCABEF分别为SCAB中点,则异面直线EFSA所成角为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

二面角αlβ等于120°,AB是棱l上两点,ACBD分别在半平面αβ内,AClBDl,且AB=AC=BD=1,则CD的长等于                                             (  )

A.                           B.
C.2                             D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:

①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.
其中正确的有________(把所有正确的序号都填上)

查看答案和解析>>

同步练习册答案