精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCDPD=CDEPC的中点。

(1)证明PA平面BDE
(2)求二面角B-DE-C的平面角的余弦值;
(3)在棱PB上是否存在点F,使PB⊥平面DEF?
证明你的结论。
见解析
(1)以D为坐标原点,分别以DADCDP所在直线为x轴、y轴、z轴建立空间直角坐标系,设PD=CD=2,则A(2,0,0),P(0,0,2),E(0,1,1),B(2,2,0),=(2,0,-2),=(0,1,1),=(2,2,0)。
=(x,y,z)是平面BDE的一个法向量,
则由,得;取x=-1,=(1,-1,1),
·=2-2=0,∴,又PA?平面BDE,∴PA∥平面BDE
(2) 由(1)知=(1,-1,1)是平面BDE的一个法向量,又==(2,0,0)是平面DEC的一个法向量。
设二面角B-DE-C的平面角为θ,由图可知θ=<,>,
∴ cosθ=cos<,>=
故二面角B-DE-C余弦值为
(3)∵=(2,2,-2),=(0,1,1),∴·=0+2-2=0,∴PBDE
假设棱PB上存在点F,使PB平面DEF,设=λ (0<λ<1),
=(2λ, 2λ,-2λ),=+=(2λ, 2λ,2-2λ),
·="0" 得 4λ2 +4λ2-2λ(2-2λ)=0,
λ= (0,1),此时PF=PB,                       
即在棱PB上存在点F,PF=PB,使得PB⊥平面DEF
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,两条异面直线AB,CD与三个平行平面α,β,γ分别相交于A,E,B及
C,F,D,又AD、BC与平面β的交点为H,G.
求证:四边形EHFG为平行四边形。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知表示两个不同的平面,表示两条不同的直线,则下列命题正确的是(  )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)如图,在三棱锥中,三条棱两两垂直,且 与平面角,与平面角.

(1)由该棱锥相邻的两个面组成的二面角中,指出所有的直二面角;
(2)求与平面所成角的大小;
(3)求二面角大小的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)
如图,在正方体中,E、F、G分别为的中点,O为的交点,
(1)证明:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在三棱柱中.

(1)若,证明:平面平面
(2)设的中点,上的一点,
平面,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右图所示,一张平行四边形的硬纸片ABC0D中,AD=BD=1,AB=.沿它的对角线BD把△BDC0折起,使点C0到达平面ABC0D外点C的位置.
(1)证明:平面ABC0D⊥平面CBC0
(2)如果△ABC为等腰三角形,求二面角A-BD-C的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知三棱柱在底面ABC上的射影恰为AC的中点D,,又知

(Ⅰ)求证:平面
(Ⅱ)求点C到平面的距离;
(Ⅲ)求二面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知一个平面,那么对于空间内的任意一条直线,在平面内一定存在一条直线,使得( )
A.平行B.垂直C.异面D.相交

查看答案和解析>>

同步练习册答案