精英家教网 > 高中数学 > 题目详情
已知一个平面,那么对于空间内的任意一条直线,在平面内一定存在一条直线,使得( )
A.平行B.垂直C.异面D.相交
B

分析:本题可以从直线与平面的位置关系入手:直线与平面的位置关系可以分为三种:直线在平面内、直线与平面相交、直线与平面平行,在这三种情况下在讨论平面中的直线与已知直线的关系,通过比较可知:每种情况都有可能垂直.
解答:解:当直线a与平面α相交时,平面α内的任意一条直线与直线a的关系只有两种:异面、相交,此时就不可能平行了,故A错.
不管直线a与平面α的位置关系相交、平行,还是在平面内,都可以在平面α内找到一条直线与直线b垂直,因为直线在异面与相交时都包括垂直的情况,故B正确.
当直线a在平面α内时,平面α内的任意一条直线与直线a的关系只有两种:平行、相交,此时就不可能异面了,故c错.
当直线a与平面α平行时,平面α内的任意一条直线与直线a的关系只有两种:异面、平行,此时就不可能相交了,故D错.
故选B .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCDPD=CDEPC的中点。

(1)证明PA平面BDE
(2)求二面角B-DE-C的平面角的余弦值;
(3)在棱PB上是否存在点F,使PB⊥平面DEF?
证明你的结论。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角梯形ABCD中, A为PD的中点,如下图,
将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,

(1)求证:SA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值;
(3)在线段BC上是否存在点F,使SF//平面EAC?若存在,确定F点的位置,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体中,点上运动,给出下列四个命题:
 
①三棱锥的体积不变; ②
∥平面;           ④平面
其中正确的命题个数有(    )                                                                            
A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,点D是AB的中点.

(1)求证:AC⊥BC1;
(2)求的体积;
(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在正四棱柱ABCD—A1B1C1D1中,AB=1,AA1=2,E为棱AA1上一点,且平面BDE。

  (I)求直线BD1与平面BDE所成角的正弦值;
(II)求二面角C—BE—D的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD—A1B1C1D1中,M为DD1的中点,O为ABCD的中心,P为棱A1B1上的任一点,则直线OP与AM所成角为     (     )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在平行六面体中,的中点,设

(1)用表示
(2)求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,四面体的三条棱两两垂直,,
为四面体外一点.给出下列命题.

①不存在点,使四面体有三个面是直角三角形;
②不存在点,使四面体是正三棱锥;
③存在点,使垂直并且相等;
④存在无数个点,使点在四面体的外接球面上.
其中真命题的序号是                  .

查看答案和解析>>

同步练习册答案