精英家教网 > 高中数学 > 题目详情
如图,四面体的三条棱两两垂直,,
为四面体外一点.给出下列命题.

①不存在点,使四面体有三个面是直角三角形;
②不存在点,使四面体是正三棱锥;
③存在点,使垂直并且相等;
④存在无数个点,使点在四面体的外接球面上.
其中真命题的序号是                  .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

己知三棱柱在底面ABC上的射影恰为AC的中点D,,又知

(Ⅰ)求证:平面
(Ⅱ)求点C到平面的距离;
(Ⅲ)求二面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知一个平面,那么对于空间内的任意一条直线,在平面内一定存在一条直线,使得( )
A.平行B.垂直C.异面D.相交

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图1,在直角梯形中,,且
现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,的中点,如图2.
(1)求证:∥平面
(2)求证:平面
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图所示,已知三棱柱,在某个空间直角坐标系中,
,其中

(1)证明:三棱柱是正三棱柱;
(2)若,求直线与平面所成角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分).若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,求:

(1)点P在直线上的概率;
(2)点P在圆外的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是平行四边形,,垂足为上,且的中点.

(1)求异面直线所成的角的余弦值;
(2)若是棱上一点,且,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

9.设是两不同的直线,是两不同的平面,则下列命题正确的是    (     )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,侧面PAD丄底面ABCD,侧棱PA="PD" =,底面 ABCD为直角梯形,其中BC//AD,AB丄AD,AD=2AB=2BC=2,0为AD中点.

①求证PO丄平面ABCD
②求异面直线PB与CD的夹角;
③求点A到平面PCD的距离.

查看答案和解析>>

同步练习册答案