精英家教网 > 高中数学 > 题目详情

已知函数,且恒成立.

(1)求ab的值;

(2)若对,不等式恒成立,求实数m的取值范围.

(3)记,那么当时,是否存在区间),使得函数在区间上的值域恰好为?若存在,请求出区间;若不存在,请说明理由.

 

【答案】

(1).(2).(3)当时,;当时,;当时,不存在.

【解析】

试题分析:(1)由.于是,当时,得

此时,,对恒成立,满足条件.故

(2)∵恒成立,∴恒成立.

.∵,∴,∴由对勾函数上的图象知当,即时,,∴

(3)∵,∴,∴,又∵,∴,∴,∴上是单调增函数,∴,且,故:当时,;当时,;当时,不存在.

考点:本题考查了函数的性质及值域

点评:此类问题常常利用函数单调性的性质、函数的值域等基础知识,考查运算求解能力与转化思想.属于基础题

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
0(x≤0)
n[x-(n-1)]+f(n-1)(n-1<x≤n,n∈N*)
数列{an}满足an=f(n)(n∈N*
(1)求数列{an}的通项公式;
(2)设x轴、直线x=a与函数y=f(x)的图象所围成的封闭图形的面积为S(a)(a≥0),求S(n)-S(n-1)(n∈N*);
(3)在集合M={N|N=2k,k∈Z,且1000≤k<1500}中,是否存在正整数N,使得不等式an-1005>S(n)-S(n-1)对一切n>N恒成立?若存在,则这样的正整数N共有多少个?并求出满足条件的最小的正整数N;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax2+bx+c
x+d
(其中a,b,c,d是实数常数,x≠-d)
(1)若a=0,函数f(x)的图象关于点(-1,3)成中心对称,求b,d的值;
(2)若函数f(x)满足条件(1),且对任意x0∈[3,10],总有f(x0)∈[3,10],求c的取值范围;
(3)若b=0,函数f(x)是奇函数,f(1)=0,f(-2)=-
3
2
,且对任意x∈[1,+∞)时,不等式f(mx)+mf(x)恒成立,求负实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海黄浦区高三上学期期末考试(即一模)理数学卷(解析版) 题型:解答题

已知函数(其中是实数常数,

(1)若,函数的图像关于点(—1,3)成中心对称,求的值;

(2)若函数满足条件(1),且对任意,总有,求的取值范围;

(3)若b=0,函数是奇函数,,且对任意时,不等式恒成立,求负实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海黄浦区高三上学期期末考试(即一模)文数学卷(解析版) 题型:解答题

已知函数(其中是实数常数,

(1)若,函数的图像关于点(—1,3)成中心对称,求的值;

(2)若函数满足条件(1),且对任意,总有,求的取值范围;

(3)若b=0,函数是奇函数,,且对任意时,不等式恒成立,求负实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆市杨家坪中学高三(上)11月月考数学试卷(理科)(解析版) 题型:解答题

已知函数数列{an}满足an=f(n)(n∈N*
(1)求数列{an}的通项公式;
(2)设x轴、直线x=a与函数y=f(x)的图象所围成的封闭图形的面积为S(a)(a≥0),求S(n)-S(n-1)(n∈N*);
(3)在集合M={N|N=2k,k∈Z,且1000≤k<1500}中,是否存在正整数N,使得不等式an-1005>S(n)-S(n-1)对一切n>N恒成立?若存在,则这样的正整数N共有多少个?并求出满足条件的最小的正整数N;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案