精英家教网 > 高中数学 > 题目详情
若函数y=x2+2x+2在闭区间[m,1]上有最大值5,最小值1,则m的取值范围是(  )
分析:数形结合:根据所给函数作出其草图,借助图象即可求得答案.
解答:解:y=x2+2x+2=(x+1)2+1,
令x2+2x+2=5,即x2+2x+-3=0,解得x=-3或x=1,f(-1)=1,
作出函数图象如下图所示:

因为函数在闭区间[m,1]上有最大值5,最小值1,
所以由图象可知,-3≤m≤-1.
故选D.
点评:本题考查二次函数在闭区间上的最值问题,考查数形结合思想,深刻理解“三个二次”间的关系是解决该类问题的基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=x2-2x-4的定义域为[0,m],值域为[-5,-4],则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=x2+2x+a2-1在区[1,2]上的最大值16,求实a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=x2-2x+2的定义域和值域均为区间[a,b],其中a,b∈Z,则a+b=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在[a,b]上的两个函数f(x)与g(x),如果对于任意x∈[a,b],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[a,b]上是接近的.若函数y=x2-2x+2与函数y=2x+m在区间[1,3]上是接近的,则实数m的取值范围是(  )

查看答案和解析>>

同步练习册答案