| A. | $\frac{99}{100}$ | B. | $\frac{101}{100}$ | C. | $\frac{99}{50}$ | D. | $\frac{101}{50}$ |
分析 由an=$\frac{2}{{n}^{2}+n}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}-\frac{1}{n+1}$),利用裂项求和法能求出数列{an}的前99项之和.
解答 解:∵数列{an}的通项公式为an=$\frac{2}{{n}^{2}+n}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}-\frac{1}{n+1}$),
∴数列{an}的前99项之和:
S99=2(1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{99}-\frac{1}{100}$)
=2(1-$\frac{1}{100}$)=$\frac{99}{50}$.
故选:C.
点评 本题考查数列的前99项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | 3 | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 既不充分也不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 充分不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 1 | 2 | 3 | 4 | 5 |
| y | 50 | 60 | 70 | 80 | 100 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com