精英家教网 > 高中数学 > 题目详情

已知AB分别为椭圆+=1(a>b>0)的左、右顶点,C(0,b),直线l:x=2ax轴交于点D,与直线AC交于点P,若∠DBP=,则此椭圆的离心率为(  )

(A) (B) (C) (D)

 

【答案】

D

【解析】如图所示,

由已知得A(-a,0),B(a,0),C(0,b),D(2a,0).

P(2a,y0),

ACP共线,

kAC=kAP,

=,

y0=3b,

P(2a,3b).

又∵∠DBP=,tanDBP=,

=,

=,

e====.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、D分别为椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左顶点与上顶点,椭圆的离心率e=
3
2
,F1、F2为椭圆的左、右焦点,点P是线段AD上的任一点,且
PF1
PF2
的最大值为1.
(1)求椭圆E的方程.
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OA⊥OB(O为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由.
(3)设直线l与圆C:x2+y2=R2(1<R<2)相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取最大值?并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知A,B分别为椭圆
x2
a2
+
y2
b2
=1(a>b>)
的右顶点和上顶点,直线 l∥AB,l与x轴、y轴分别交于C,D两点,直线CE,DF为椭圆的切线,则CE与DF的斜率之积kCE?kDF等于(  )
A、±
a2
b2
B、±
a2-b2
a2
C、±
b2
a2
D、±
a2-b2
b2

查看答案和解析>>

科目:高中数学 来源:2013届江西省高二下学期第二次月考理科数学试卷(解析版) 题型:解答题

已知AD分别为椭圆E的左顶点与上顶点,椭圆的离心率FF2为椭圆的左、右焦点,点P是线段AD上的任一点,且的最大值为1 .

(1)求椭圆E的方程;

(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点AB,且OAOBO为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由;

(3)设直线l与圆相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,已知A,B分别为椭圆数学公式的右顶点和上顶点,直线 l∥AB,l与x轴、y轴分别交于C,D两点,直线CE,DF为椭圆的切线,则CE与DF的斜率之积kCE•kDF等于


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

同步练习册答案