已知函数
的定义域为
,当
时,
,且对于任意的
,恒有
成立.
(1)求
;
(2)证明:函数
在
上单调递增;
(3)当
时,
①解不等式
;
②求函数
在
上的值域.
(1)
(2) 设
,则
,
∴函数
在
上单调递增(3) ①
②![]()
【解析】
试题分析:(1)∵对于任意的
恒有
成立.
∴令
,得:
2分
(2)设
,则
4分
![]()
7分
∴函数
在
上单调递增 8分
(3)①∵对于任意的
恒有
成立.
∴
又∵
,![]()
∴
等价于
, 10分
解得:
12分
∴所求不等式的解集为![]()
②![]()
由①得:![]()
由(2)得:函数
在
上单调递增
故函数
在
上单调递增 13分
,
15分
∴函数
在
上的值域为
16分
考点:抽象函数单调性及值域
点评:第一问抽象函数求值关键是对自变量合理赋值,第二问判定其单调性需通过定义:在
下比较
的大小关系,第三问解不等式,求函数值域都需要结合单调性将抽象函数转化为具体函数,利用单调性找到最值点的位置
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2013-2014学年浙江省杭州市七校高三上学期期中联考理科数学试卷(解析版) 题型:解答题
已知函数
的定义域为
,
(1)求
;
(2)若
,且
是
的真子集,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届辽宁朝阳高二下学期期中考试理科数学试卷(解析版) 题型:选择题
已知函数
的定义域为
,部分对应值如下表。
的导函数
的图像如图所示。
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
![]()
下列关于函数
的命题:
①函数
在
上是减函数;②如果当
时,
最大值是
,那么
的最大值为
;③函数
有
个零点,则
;④已知
是
的一个单调递减区间,则
的最大值为
。
其中真命题的个数是( )
A、4个 B、3个 C、2个 D、1个
查看答案和解析>>
科目:高中数学 来源:2010-2011学年海南省海口市高三高考调研考试理科数学 题型:选择题
已知函数
的定义域为
,且
,
为
的导函数,函数
的图象如图所示.若正数
,
满足
,则
的取值范围是
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com