精英家教网 > 高中数学 > 题目详情
15.已知函数y=f(x)的图象如图所示,
(1)写出f(x)的定义域和值域;
(2)若f(x)=0.求x的值;
(3)若f(x)≤3,求x的取值范围.

分析 由题意利用函数的图象,求得f(x)的定义域和值域、零点、以及不等式f(x)≤3的解集.

解答 解:(1)根据函数y=f(x)的图象可得,
f(x)的定义域为[-3,4],
值域为[0,5];
(2)由函数y=f(x)的图象可得,
若f(x)=0,则x=-2;
(3)由函数y=f(x)的图象可得,
若f(x)≤3,则x的取值范围为[-3,0].

点评 本题主要考查函数的图象的应用,利用函数的图象研究函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.5个人排成一排,若A、B、C三人左右顺序一定,那么不同排法有(  )
A.$A_5^5$B.$A_3^3•A_3^3$C.$\frac{A_5^5}{A_3^3}$D.$A_3^3$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知an=$\frac{n-\sqrt{2015}}{n-\sqrt{2016}}$(n∈N*),则数列{an}的前50项中最小项和最大项分别是(  )
A.a1,a50B.a1,a44C.a45,a50D.a44,a45

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知在△ABC中,a+b=$\sqrt{3}$,A=$\frac{π}{3}$,B=$\frac{π}{4}$,则a的值为3($\sqrt{3}$-$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=2x+1,若f1(x)=f(x),fn+1(x)=f[fn(x)],n∈N*,则f4(x)的表达式为f4(x)=16x+15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知变换T将一个图形绕原点顺时针旋转60°,则该变换对应的矩阵是$[\begin{array}{l}{\frac{1}{2}}&{\frac{\sqrt{3}}{2}}\\{-\frac{\sqrt{3}}{2}}&{\frac{1}{2}}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=4-\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数),再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为ρ=-4cosθ.
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A、B,若点M的坐标为(-2,1),求|MA|•|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex-ax2-bx-1(a,b∈R,e为自然对数的底数).
(1)若对任意a∈[0,1],总存在x∈[1,2],使得f(x)≤0成立,求b的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,角A、B、C的对边分别为a、b、c,则以下结论错误的为(  )
A.若$\frac{sinA}{a}=\frac{cosB}{b}=\frac{cosC}{c}$,则A=90°
B.$\frac{a}{sinA}=\frac{b+c}{sinB+sinC}$
C.若sinA>sinB,则A>B;反之,若A>B,则sinA>sinB
D.若sin2A=sin2B,则a=b

查看答案和解析>>

同步练习册答案