精英家教网 > 高中数学 > 题目详情

【题目】直三棱柱ABC﹣A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1= ,M是CC1的中点,则异面直线AB1与A1M所成角为

【答案】
【解析】解:连接AC1
∵∠ACB=90°,∠BAC=30°,BC=1,AA1=
∴A1C1= BC=
Rt△A1C1M中,tan∠A1MC1=
Rt△AA1C1中,tan∠AC1A1=
∴tan∠MA1C1=tan∠AC1A1 即∠AC1A1=∠A1MC1
可得矩形AA1C1C中,A1M⊥AC1
∵B1C1⊥A1C1 , B1C1⊥CC1且AC1∩CC1=C1
∴B1C1⊥平面AA1C1
∵A1M面AA1C1 , ∴B1C1⊥A1M,
又AC1∩B1C1=C1 , ∴A1M⊥平面AB1C1
结合AB1平面AB1C1 , 得到AB1⊥A1M,
即异面直线AB1与A1M所成的角是
所以答案是:

【考点精析】关于本题考查的异面直线及其所成的角,需要了解异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+)+b (A>0,ω>0,| |<)的模型波动(x为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f(x)的解析式为

A. f(x)=2sin(x-)+7 (1≤x≤12,x∈N

B. f(x)=9sin(x-) (1≤x≤12,x∈N

C. f(x)=2sinx+7 (1≤x≤12,x∈N

D. f(x)=2sin(x+)+7 (1≤x≤2,x∈N

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对a,b∈R,记max{a,b}= ,则函数f(x)=max{|x+1|,x+2}(x∈R)的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若上存在零点,求实数的取值范围;

(2)当时, 若对任意的,总存在使成立, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+4[sin(θ+ )]x﹣2,θ∈[0,2π]].
(1)若函数f(x)为偶函数,求tanθ的值;
(2)若f(x)在[﹣ ,1]上是单调函数,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:函数 在(﹣∞,+∞)上有极值,命题q:双曲线 的离心率e∈(1,2).若p∨q是真命题,p∧q是假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案