【题目】已知函数
(
是自然对数的底数)与
的图象上存在关于
轴对称的点,则实数
的取值范围是( )
A.
B.
C.
D. ![]()
【答案】A
【解析】根据题意,若函数f(x)=﹣x3+1+a(
≤x≤e,e是自然对数的底)与g(x)=3lnx的图象上存在关于x轴对称的点,
则方程﹣x3+1+a=﹣3lnx在区间[
,e]上有解,
﹣x3+1+a=﹣3lnxa+1=x3﹣31nx,即方程a+1=x3﹣31nx在区间[
,e]上有解,
设函数g(x)=x3﹣31nx,其导数g′(x)=3x2﹣
=
,
又由x∈[
,e],g′(x)=0在x=1有唯一的极值点,
分析可得:当
≤x≤1时,g′(x)<0,g(x)为减函数,
当1≤x≤e时,g′(x)>0,g(x)为增函数,
故函数g(x)=x3﹣31nx有最小值g(1)=1,
又由g(
)=
+3,g(e)=e3﹣3;比较可得:g(
)<g(e),
故函数g(x)=x3﹣31nx有最大值g(e)=e3﹣3,
故函数g(x)=x3﹣31nx在区间[
,e]上的值域为[1,e3﹣3];
若方程a+1=x3﹣31nx在区间[
,e]上有解,
必有1≤a+1≤e3﹣3,则有0≤a≤e3﹣4,
即a的取值范围是[0,e3﹣4];
科目:高中数学 来源: 题型:
【题目】已知抛物线E:y2=2px(p>0)的准线与x轴交于点K,过点K作圆C:(x﹣2)2+y2=1的两条切线,切点为M,N,|MN|= ![]()
(1)求抛物线E的方程
(2)设A、B是抛物线E上分别位于x轴两侧的两个动点,且
=
(其中O为坐标原点)
①求证:直线AB必过定点,并求出该定点Q的坐标
②过点Q作AB的垂线与抛物线交于G、D两点,求四边形AGBD面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数
,下列说法错误的是( )
A.
是
的极小值点 B. 函数
有且只有1个零点
C. 存在正实数
,使得
恒成立 D. 对任意两个正实数
,且
,若
,则![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直三棱柱ABC﹣A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=
,M是CC1的中点,则异面直线AB1与A1M所成角为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos(ωx+φ)(ω>0,﹣π<φ<0)的最小正周期为π,且它的图象过点(
,
).
(1)求ω,φ的值;
(2)求函数y=f(x)的单调增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知曲线
的参数方程为
(
,
为参数).以坐标原点
为极点,
轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程为
.
(Ⅰ)当
时,求曲线
上的点到直线
的距离的最大值;
(Ⅱ)若曲线
上的所有点都在直线
的下方,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD和ADPQ均为正方形,他们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点,设异面直线EM与AF所成的角为θ,则cosθ的最大值为 . ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥S﹣ABCD中,底面ABCD是边长为1的菱形,
底面ABCD,SA=2,M为SA的中点. ![]()
(1)求异面直线AB与MD所成角的大小;
(2)求直线AS与平面SCD所成角的正弦值;
(3)求平面SAB与平面SCD所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com