精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=lnx-$\frac{1}{2}$ax2-bx.
(1)当a=3,b=2时,求函数f(x)的单调区间;
(2)令F(x)=f(x)+$\frac{1}{2}$ax2+bx+$\frac{a}{x}$(0<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤$\frac{1}{8}$恒成立,求实数a的取值范围;
(3)当a=b=0时,令H(x)=f(x)-$\frac{1}{x}$,G(x)=mx,若H(x)与G(x)的图象有两个交点A(x1,y1),B(x2,y2),求证:x1x2>2e2

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)求出F(x)的导数,问题转化为8a≥(8x0-${{x}_{0}}^{2}$)max,x0∈(0,3],令g(x0)=8x0-${{x}_{0}}^{2}$=-${{(x}_{0}-4)}^{2}$+16,根据函数的单调性求出a的范围即可;
(3)求出lnx1x2-$\frac{2{(x}_{1}{+x}_{2})}{{{x}_{1}x}_{2}}$=$\frac{{{x}_{1}+x}_{2}}{{{x}_{2}-x}_{1}}$ln$\frac{{x}_{2}}{{x}_{1}}$,不妨设0<x1<x2,记t=$\frac{{x}_{2}}{{x}_{1}}$>1,令F(t)=lnt-$\frac{2(t-1)}{t+1}$,(t>1),根据函数的单调性求出ln$\sqrt{{{x}_{1}x}_{2}}$-$\frac{2}{\sqrt{{{x}_{1}x}_{2}}}$>1,解不等式即可.

解答 解:(1)f(x)=lnx-$\frac{3}{2}$x2-2x,定义域是(0,+∞),
f′(x)=$\frac{-(3x-1)(x+1)}{x}$,
令f′(x)>0,解得:0<x<$\frac{1}{3}$,令f′(x)<0,解得:x>$\frac{1}{3}$,
∴f(x)在(0,$\frac{1}{3}$)递增,在($\frac{1}{3}$,+∞)递减;
(2)F(x)=lnx+$\frac{a}{x}$,x∈(0,3],
则有k=F′(x0)=$\frac{{x}_{0}-a}{{{x}_{0}}^{2}}$≤$\frac{1}{8}$在x0(0,3]上恒成立,
∴8a≥(8x0-${{x}_{0}}^{2}$)max,x0∈(0,3],
令g(x0)=8x0-${{x}_{0}}^{2}$=-${{(x}_{0}-4)}^{2}$+16,
∴g(x0)在(0,3]递增,
∴g(x0)≤g(3)=24-9=15,
∴8a≥15,
解得:a≥$\frac{15}{8}$;
(3)H(x)=lnx-$\frac{1}{x}$,G(x)=mx,定义域是(0,+∞),
∴lnx1-$\frac{1}{{x}_{1}}$=mx1①,lnx2-$\frac{1}{{x}_{2}}$=mx2②,
①+②得:lnx1+lnx2-$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$=m(x1+x2),
即lnx1x2-$\frac{{{x}_{1}+x}_{2}}{{{x}_{1}x}_{2}}$=m(x1+x2)③,
②-①得:lnx2-lnx1+$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$=m(x2-x1),
即ln$\frac{{x}_{2}}{{x}_{1}}$+$\frac{{{x}_{2}-x}_{1}}{{{x}_{1}x}_{2}}$=m(x2-x1)④,
由③④得lnx1x2-$\frac{2{(x}_{1}{+x}_{2})}{{{x}_{1}x}_{2}}$=$\frac{{{x}_{1}+x}_{2}}{{{x}_{2}-x}_{1}}$ln$\frac{{x}_{2}}{{x}_{1}}$,
不妨设0<x1<x2,记t=$\frac{{x}_{2}}{{x}_{1}}$>1,
令F(t)=lnt-$\frac{2(t-1)}{t+1}$,(t>1),
∴F′(t)=$\frac{{(t-1)}^{2}}{t(t+1)}$>0,
∴F(t)在(1,+∞)递增,∴F(t)>F(1)=0,
∴lnt>$\frac{2(t-1)}{t+1}$,即ln$\frac{{x}_{2}}{{x}_{1}}$>$\frac{2{(x}_{2}{-x}_{1})}{{{x}_{1}+x}_{2}}$,
∴lnx1x2-$\frac{2{(x}_{1}{+x}_{2})}{{{x}_{1}x}_{2}}$=$\frac{{{x}_{1}+x}_{2}}{{{x}_{2}-x}_{1}}$ln$\frac{{x}_{2}}{{x}_{1}}$>2,
∴lnx1x2-$\frac{2{(x}_{1}{+x}_{2})}{{{x}_{1}x}_{2}}$<lnx1x2-$\frac{4\sqrt{{{x}_{1}x}_{2}}}{{{x}_{1}x}_{2}}$=lnx1x2-$\frac{4}{\sqrt{{{x}_{1}x}_{2}}}$=2ln$\sqrt{{{x}_{1}x}_{2}}$-$\frac{4}{\sqrt{{{x}_{1}x}_{2}}}$,
∴2ln$\sqrt{{{x}_{1}x}_{2}}$-$\frac{4}{\sqrt{{{x}_{1}x}_{2}}}$>2,即ln$\sqrt{{{x}_{1}x}_{2}}$-$\frac{2}{\sqrt{{{x}_{1}x}_{2}}}$>1,
令ω(x)=lnx-$\frac{2}{x}$,
∴ω′(x)=$\frac{1}{x}$+$\frac{2}{{x}^{2}}$>0,
∴ω(x)在(0,+∞)递增,
又ln($\sqrt{2}$e)-$\frac{2}{\sqrt{2}e}$=$\frac{1}{2}$ln2+1-$\frac{\sqrt{2}}{e}$<1,
∴ln$\sqrt{{{x}_{1}x}_{2}}$-$\frac{2}{\sqrt{{{x}_{1}x}_{2}}}$>1>ln($\sqrt{2}$e)-$\frac{2}{\sqrt{2}e}$,
即ω($\sqrt{{{x}_{1}x}_{2}}$)>ω($\sqrt{2}$e),
∴$\sqrt{{{x}_{1}x}_{2}}$>$\sqrt{2}$e,
∴x1x2>2e2

点评 本题考查函数的单调性问题,考查了利用导数求函数的最值,体现了数学转化思想方法和函数构造法,本题综合考查了学生的逻辑思维能力和灵活应变能力,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设a=2${\;}^{\frac{1}{5}}$,b=($\frac{6}{7}$)${\;}^{\frac{1}{6}}$,c=ln$\frac{3}{π}$,则(  )
A.c<a<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.随着科技的发展,手机已经成为人们不可或缺的交流工具,除传统的打电话外,手机的功能越来越强大,人们可以玩游戏,看小说,观电影,逛商城等,真是“一机在手,天下我有”,所以,有人把喜欢玩手机的人冠上了名号“低头族”,低头族已经严重影响了人们的生活,一媒体为调查市民对低头族的认识,从某社区的500名市民中,随机抽取100名市民,按年龄情况进行统计的频率分布表和频率分布直方图.
分组(单位:岁)频数频率
[20,25)50.05
[25,30)200.20
[30,35)0.350
[35,40)30
[40,45]100.10
合计1001.000
(I)频率分布表中的①②位置应填什么数?并补全频率分布直方图,再根据频率分布直方图统计这500名市民的平均年龄;
(II)在抽出的100名中按年龄采用分层抽样的方法抽取20名接受采访,再从抽出的这20名中年龄在[30,40)的选取2名担任主要发言人.记这2名主要发言人年龄在[30,35)的人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用辗转相除法求80和36的最大公约数,并用更相减损术检验所得结果.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow a$=(-1,2).
(1)若|${\overrightarrow c}$|=$\sqrt{5}$,且$\overrightarrow a$∥$\overrightarrow c$,求$\overrightarrow c$的坐标;
(2)若|${\overrightarrow b}$|=$\frac{{\sqrt{5}}}{2}$,且($\overrightarrow a$+$\overrightarrow{2b}$)⊥(2$\overrightarrow a$-$\overrightarrow b$),求|2$\overrightarrow a$+$\overrightarrow b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A、B、C所对的边长分别为a,b,c,若a,b,c成等比数列且c=2a,则cosB 等于(  )
A.$\frac{3}{4}$B.$\frac{\sqrt{2}}{4}$C.$\frac{1}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+|x-t|.
(Ⅰ)当t=1时,求不等式f(x)≥1的解集;
(Ⅱ)设函数f(x)在[0,2]上的最小值为h(t),求h(t)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(I)证明:AE⊥PD;
(II)H是PD上的动点,EH与平面PAD所成的最大角为45°,求二面角E-AF-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)等差数列{an}的前n项和是Sn,已知am-1+am+1-am2=0,S2m-1=38,求m;
(2)设等差数列{an}的前n项和是Sn,若S3=9,S6=36,求a7+a8+a9
(3)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,求这个数列的项数;
(4)已知数列{an}的通项公式是an=4n-25,求数列{|an|}的前n项和并说出判断数列是等差数列的基本方法.

查看答案和解析>>

同步练习册答案