分析 若f(x)=$\left\{\begin{array}{l}{ax+2,x<1}\\{{x}^{2}-ax+2,x≥1}\end{array}\right.$在R上单调递增,则每段函数均为增函数,且当x=1时,前一段函数的函数值不大于后一段函数的函数值,由此可构造满足条件的不等式组,解出实数a的取值范围.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{ax+2,x<1}\\{{x}^{2}-ax+2,x≥1}\end{array}\right.$在R上单调递增,
则$\left\{\begin{array}{l}a>0\\ \frac{a}{2}≤1\\ a+2≤3-a\end{array}\right.$,
解得:a∈(0,$\frac{1}{2}$],
故答案为:(0,$\frac{1}{2}$]
点评 本题考查的知识点是函数单调性的性质,熟练掌握分段函数的单调性是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 2013 | D. | 2014 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | 2 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com