精英家教网 > 高中数学 > 题目详情

自原点O做圆(x-1)2+y2=1的不重合两弦OA,OB若|OA|•|OB|=k(定值),那么不论A,B两点位置怎样,直线AB恒切与一个定圆,并求出定圆方程.

解:由题意,圆(x-1)2+y2=1是△AOB 的外接圆,半径为1,根据正弦定理:|AB|=2Rsin∠AOB=2sin∠AOB
设AB边上的高为h,则△AOB的面积S=|AB|•h=h•sin∠AOB
∵S=|OA|•|OB|•sin∠AOB=ksin∠AOB
∴h=为定值
即O到AB的距离为定值
∴直线AB与以原点为圆心,为半径的圆相切,圆的方程为x2+y2=
分析:设AB边上的高为h,则△AOB的面积S=|AB|•h,再利用S=|OA|•|OB|•sin∠AOB,即可得到结论.
点评:本题考查直线与圆的位置关系,考查圆的方程,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选做题本题包括A,B,C,D四小题,请选定其中 两题 作答,每小题10分,共计20分,
解答时应写出文字说明,证明过程或演算步骤.
A选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.
B选修4-2:矩阵与变换
已知二阶矩阵A=
ab
cd
,矩阵A属于特征值λ1=-1的一个特征向量为α1=
1
-1
,属于特征值λ2=4的一个特征向量为α2=
3
2
.求矩阵A.
C选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
x=2cosα
y=sinα
(α为参数)
.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-
π
4
)=2
2
.点
P为曲线C上的动点,求点P到直线l距离的最大值.
D选修4-5:不等式选讲
若正数a,b,c满足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

自原点O做圆(x-1)2+y2=1的不重合两弦OA,OB若|OA|•|OB|=k(定值),那么不论A,B两点位置怎样,直线AB恒切与一个定圆,并求出定圆方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省惠州市惠阳一中高二(上)期中数学试卷(理A)(解析版) 题型:解答题

自原点O做圆(x-1)2+y2=1的不重合两弦OA,OB若|OA|•|OB|=k(定值),那么不论A,B两点位置怎样,直线AB恒切与一个定圆,并求出定圆方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省惠州市惠阳一中高二(上)期中数学试卷(理A)(解析版) 题型:解答题

自原点O做圆(x-1)2+y2=1的不重合两弦OA,OB若|OA|•|OB|=k(定值),那么不论A,B两点位置怎样,直线AB恒切与一个定圆,并求出定圆方程.

查看答案和解析>>

同步练习册答案