精英家教网 > 高中数学 > 题目详情

已知二次函数在x=1处的导数值为1,则该函数的最大值是      (   )

A.         B.        C.          D.

 

【答案】

B

【解析】

试题分析:,当x=1时,故(舍去).据二次函数性质可以求得.选B。

考点:本题主要考查导数的运算及二次函数图象和性质。

点评:典型题,首先求得函数中参数,再利用二次函数性质求最大值。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+
1
2
满足f(1+x)=f(1-x)且方程f(x)=
5
2
-x
有等根
(1)求f(x)的表达式;
(2)若f(x)在定义域(-1,t]上的值域为(-1,1],求t的取值范围;
(3)是否存在实数m、n(m<n),使f(x)定义域和值域分别为[m,n]和[2m,2n],若存在,求出m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)为偶函数,试判断g(x)的奇偶性;
(2)若方程g(x)=x有两个不相等的实根,当a>0时判断f(x)在(-1,1)上的单调性;
(3)若方程g(x)=x的两实根为x1,x2f(x)=0的两根为x3,x4,求使x3<x1<x2<x4成立的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=
a
2
x2-x-a(a>0)

(I)若f(x)满足条件f(1-x)=f(1+x),试求f(x)的解析式;
(II)若函数f(x)在区间[
2
,2]
上的最小值为h(a),试求h(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)为偶函数,试判断g(x)的奇偶性;
(2)若方程g(x)=x有两个不相等的实根,当a>0时判断f(x)在(-1,1)上的单调性;
(3)当b=2a时,问是否存在x的值,使满足-1≤a≤1且a≠0的任意实数a,不等式f(x)<4恒成立?并说明理由.

查看答案和解析>>

同步练习册答案