精英家教网 > 高中数学 > 题目详情
设{|an|}(n∈N*)是递增的等比数列,对于给定的k(k∈N*),若,则数列{an}(n=1,2,3,…,k)的个数为( )
A.2个
B.4个
C.2k
D.无穷多个
【答案】分析:先根据求出数列的通项,对于数列{an}而言,有k项,而每一项有两种可能,一是an=2k-1,二是an=-2k-1,从而得到所以数列的个数为2k
解答:解:∵…①,
…②(k≥2)
①-②得所以ak2=4k-1(k≥2)
当k=1时,a1=1,满足上式
∴ak2=4k-1
|ak|=2k-1
即ak=±2k-1
对于{an}而言,有k项,而每一项有两种可能,一是an=2k-1,二是an=-2k-1
所以数列的个数为2k
故选C.
点评:本题主要考查了数列的应用,以及已知前n项和求数列的通项,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A(x1,y1)、B(x2,y2)是函数f(x)=
3
2
-
2
2x+
2
图象上任意两点,且x1+x2=1.
(Ⅰ)求y1+y2的值;
(Ⅱ)若Tn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)
(其中n∈N*),求Tn
(Ⅲ)在(Ⅱ)的条件下,设an=
2
Tn
(n∈N*),若不等式an+an+1+an+2+…+a2n-1
1
2
loga(1-2a)
对任意的正整数n恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=x2+x,当x∈[n,n+1](n∈N*)时,f(x)的所有整数值的个数为g(n).
(1)试用n表示g(n);
(2)设an=
2n3+3n2
g(n)
(n∈N*),Sn=a1-a2+a3-a4+…+(-1)n-1an,求Sn
(3)设bn=
g(n)
2n
,Tn=b1+b2+…+bn,若Tn<M(M∈Z),求M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)已知函数f(x)=
x+1-tt-x
(t为常数).
(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).
(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).
(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若可用上述方法构造出一个常数列{xn},求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)已知函数f(x)=
x+1-tt-x
(t为常数).
(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).
(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).
(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若取定义域中的任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广西一模)已知数列{an}满足:a1=1,a2=2,且an+2=(2+cosnπ)(an-1)+3,n∈N*
(1)求通项公式an
(2)设{an}的前n项和为Sn,问:是否存在正整数m、n,使得S2n=mS2n-1?若存在,请求出所有的符合条件的正整数对(m,n),若不存在,请说明理由.

查看答案和解析>>

同步练习册答案