精英家教网 > 高中数学 > 题目详情
已知奇函数f(x)对任意实数x满足f(2-x)=f(x)且当x∈[0,1]时,f(x)=x•4x,则在区间[0,8]上,不等式f(x)>1的解是
 
分析:先利用条件求出x∈[0,1]时,不等式f(x)>1的解,再利用题中条件f(2-x)=f(x)求得的对称轴以及奇函数与f(2-x)=f(x)求得的周期来求在区间[0,8]上,不等式f(x)>1的解即可.
解答:解:由x∈[0,1]时,f(x)=x•4x>1解得
1
2
<x≤1,
由于f(2-x)=f(x)得函数关于直线x=1对称,
所以函数在x∈[1,2]时,f(x)>1可解得1≤x<
3
2

即在x∈[0,2]时,满足f(x)>1的解为(
1
2
3
2
),
又函数为奇函数,f(x)=-f(-x),所以得f(2-x)=-f(-x),可得周期为4.
所以当x∈(
1
2
+4,
3
2
+4)即x∈(
9
2
11
2
),也满足f(x)>1.
故答案为    (
1
2
3
2
)∪(
9
2
11
2
).
点评:本题主考查抽象函数的周期性、对称性以及奇偶性,抽象函数是相对于给出具体解析式的函数来说的,它虽然没有具体的表达式,但是有一定的对应法则,满足一定的性质,这种对应法则及函数的相应的性质是解决问题的关键.抽象函数的抽象性赋予它丰富的内涵和多变的思维价值,可以考查类比猜测,合情推理的探究能力和创新精神.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)对任意的正实数x1,x2(x1≠x2),恒有(x1-x2)(f(x1)-f(x2))>0,则一定正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)对任意x,y∈R,总有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-
23

(1)求证:f(x)是R上的减函数.
(2)求f(x)在[-3,3]上的最大值和最小值.
(3)若f(x)+f(x-3)≤-2,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)对x∈R都有f(x+2)=-f(x)成立,若f(1)=2,则f(2011)等于(  )

查看答案和解析>>

科目:高中数学 来源:2011年江西省吉安市高考数学二模试卷(理科)(解析版) 题型:解答题

已知奇函数f(x)对任意实数x满足f(2-x)=f(x)且当x∈[0,1]时,f(x)=x•4x,则在区间[0,8]上,不等式f(x)>1的解是   

查看答案和解析>>

同步练习册答案