精英家教网 > 高中数学 > 题目详情
17.若x<5,则$\sqrt{{x^2}-10x+25}$=5-x.

分析 利用根式的运算性质即可得出.

解答 解:∵x<5,则$\sqrt{{x^2}-10x+25}$=$\sqrt{(x-5)^{2}}$=|x-5|=5-x,
故答案为:5-x.

点评 本题考查了根式的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.求下列函数在给定区间上的值域:
(1)y=$\frac{3x-2}{x+3}$;(x∈[-2,4])
(2)y=${4}^{x+\frac{1}{2}}$-6•2x+1,x∈[-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a>0,b>0,且$\frac{1}{a}+\frac{2}{b}=1$,则a+2b的最小值为(  )
A.$5+2\sqrt{2}$B.$8\sqrt{2}$C.5D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}公差不为零,前n项和为Sn,且a1,a2,a5成等比数列,S5=3a4+4.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足${b_n}={a_n}•{3^n}$,求数列{bn}前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(Ⅰ)已知全集U={1,2,a-1},A={1,b},∁UA={3},求a、b;
(Ⅱ)若M={x|0<x<2},N={x|x<1,或x>4},求(∁RM)∩N,M∪(∁RN).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线y2=6x上的两个动点A和B,F是焦点,满足AF+BF=7,线段AB的垂直平分线与x轴交于点C,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在△ABC中,∠BAC=60°,线段AD⊥平面ABC,AH⊥平面DBC,H为垂足.求证:H不可能是△BCD的垂心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.深夜,一辆出租车涉及一起交通事故,已知该市有两家出租车公司,红色出租车公司和蓝色出租车公司,其中红色出租车公司和蓝色出租车公司分别占整个城市出租车的15%和85%.据现场目击证人说,事故现场的出租车是红色的,并对现场目击证人的辨别能力做了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大嫌疑.你觉得警察这样的认定公平吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,抛物线开口向下,与x轴交于原点O与点A,顶点为P,△OPA是一个面积为1的等腰直角三角形.
(1)求以此抛物线为其图象的二次函数的解析式;
(2)求此二次函数在[$\frac{1}{2}$,3]上的最大值与最小值.

查看答案和解析>>

同步练习册答案