【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在A,B实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在A,B试验地随机抽选各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.
![]()
(1)求图中a的值,并求综合评分的中位数;
(2)用样本估计总体,以频率作为概率,若在A,B两块实验地随机抽取3棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;
(3)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合计 |
附:下面的临界值表仅供参考.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中
.)
【答案】(1)
,82.5;(2)分布列见解析,
;(3)列联表见解析,有90%的把握认为优质花苗与培育方法有关系.
【解析】
(1)根据各段的频率之和为1,可得
,然后假设中位数,并根据在中位数的左右两边的频率均为
,简单计算,可得结果.
(2)假设所抽取的花苗为优质花苗的颗数为X,可知
,然后计算相对应颗数的概率,画出分布列,最后根据期望的计算公式,可得结果.
(3)先计算出优质花苗的频率,然后可得优质花苗的颗数,进一步得出其他的数据,最后计算
,根据表格进行比较,可得结果.
(1)由
,
解得
.
令得分中位数为x,由
,
解得
.
故综合评分的中位数为82.5.
(2)由(1)与频率分布直方图 ,
优质花苗的频率为
,即概率为
,
设所抽取的花苗为优质花苗的颗数为X,则
,
;
;
;
.
其分布列为:
X | 0 | 1 | 2 | 3 |
P |
|
|
|
|
所以,所抽取的花苗为优质花苗的数学期望
.
(3)结合(1)与频率分布直方图,
优质花苗的频率为
,
则样本中,优质花苗的颗数为60棵,列联表如下表所示:
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | 30 | 50 |
乙培育法 | 40 | 10 | 50 |
合计 | 60 | 40 | 100 |
可得
.
所以,有90%的把握认为优质花苗与培育方法有关系.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为
(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为
.
(1)求直线l的普通方程和圆C的直角坐标方程;
(2)直线l与圆C交于A,B两点,点P(2,1),求|PA||PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长方形
中,
,
,现将长方形沿对角线
折起,使
,得到一个四面体
,如图所示.
![]()
(1)试问:在折叠的过程中,异面直线
与
能否垂直?若能垂直,求出相应的
的值;若不垂直,请说明理由;
(2)当四面体
体积最大时,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,直线
的极坐标方程为
.
(1)求
的普通方程和
的直角坐标方程;
(2)直线
与
轴的交点为
,经过点
的直线
与曲线
交于
两点,若
,求直线
的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆
的左焦点为
,右顶点为
,上顶点为
.
(1)已知椭圆的离心率为
,线段
中点的横坐标为
,求椭圆的标准方程;
(2)已知△
外接圆的圆心在直线
上,求椭圆的离心率
的值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】癌症是迄今为止人类尚未攻克的疾病之一,目前,癌症只能尽量预防.某医学中心推出了一种抗癌症的制剂,现对20位癌症病人,进行医学试验测试药效,测试结果分为“病人死亡”和“病人存活”,现对测试结果和药物剂量(单位:
)进行统计,规定病人在服用
(包括
)以上为“足量”,否则为“不足量”,统计结果显示,这20病人
中“病人存活”的有13位,对病人服用的药物剂量统计如下表:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
吸收量/ | 6 | 8 | 3 | 8 | 9 | 5 | 6 | 6 | 2 | 7 | 7 | 5 | 10 | 6 | 7 | 8 | 8 | 4 | 6 | 9 |
已知“病人存活”,但服用的药物剂量不足的病人共1位.
(1)完成下列
列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为“病人存活”与服用药物的剂量足量有关?
服用药物足量 | 服用药物不足量 | 合计 | |
病人存活 | 1 | ||
病人死亡 | |||
合计 | 20 |
(2)若在该样本“服用药物剂量不足”的病人中随机抽取3位,求这三人中恰有1位“病人存活”的概率.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com