精英家教网 > 高中数学 > 题目详情
(2012•洛阳模拟)△ABC外接圆的半径为1,圆心为O,且2
OA
+
AB
+
AC
=
0
|
OA
|=|
AB
|
,则
CA
CB
=
3
3
分析:利用向量的运算法则将已知等式化简得到
OB
=-
OC
,得到BC为直径,故△ABC为直角三角形,求出三边长可得∠ACB 的值,利用两个向量的数量积的定义求出
CA
CB
的值.
解答:解:∵2
OA
+
AB
+
AC
=
0
,∴
OA
+
AB
+
OA
+AC
=
0
,∴
OB
=-
OC

∴O,B,C共线,BC为圆的直径,∴AB⊥AC.
|
OA
|=|
AB
|
,∴|
OA
|=|
AB
|
=1,|BC|=2,|AC|=
3
,故∠ACB=
π
6

CA
CB
=
3
×2cos
π
6
=3,
故答案为:3.
点评:本题主要考查两个向量的数量积的定义,两个向量垂直的充要条件、圆的直径对的圆周角为直角,求出△ABC为直角三角形及三边长,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•洛阳模拟)在△ABC中,角A、B、C所对的边分别为a、b、c,
q
=(2a,1),
p
=(2b-c,cosC)且
p
q

求:
(I)求sinA的值;
(II)求三角函数式
-2cos2C
1+tanC
+1
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳模拟)若a=
ln26
4
,b=ln2ln3,c=
ln2π
4
,则a,b,c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳模拟)阅读如图的算法框图,输出的结果S的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳模拟)设变量x,y满足约束条件:
x+y≥3
x-y≥-1
2x-y≤3
.则目标函数z=2x+3y的最小值为
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳模拟)已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2
3
,AB=1,AC=2,∠BAC=60°,则球O的表面积为
(  )

查看答案和解析>>

同步练习册答案