精英家教网 > 高中数学 > 题目详情

x、y满足约束条件数学公式,若目标函数z=ax+by(a>0,b>0)的最大值为7,则数学公式的最小值为


  1. A.
    14
  2. B.
    7
  3. C.
    18
  4. D.
    13
B
分析:作出可行域,得到目标函数z=ax+by(a>0,b>0)的最优解,从而得到3a+4b=7,利用基本不等式即可.
解答:解:∵x、y满足约束条件,目标函数z=ax+by(a>0,b>0),作出可行域:
由图可得,可行域为△ABC区域,目标函数z=ax+by(a>0,b>0)经过可行域内的点C时,取得最大值(最优解).
解得x=3,y=4,即C(3,4),
∵目标函数z=ax+by(a>0,b>0)的最大值为7,
∴3a+4b=7(a>0,b>0),
=(3a+4b)•(
=(9++16+)≥(25+2)=×49=7(当且仅当a=b=1时取“=”).
故选B.
点评:本题考查线性规划,作出线性约束条件下的可行域,求得其最优解是关键,也是难点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x、y满足约束条件
x+y≤3
y≤x-1
y≥0
,则z=x2+y2的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
x-2y-1
y-2
的取值范围是(  )
A、[-
9
4
,-
1
2
]
B、(-∞,-
9
4
]∪[-
1
2
,+∞)
C、(-
9
4
,-
1
2
)
D、(-∞,-
9
4
)∪(-
1
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
x≥1
y≥
1
2
x
2x+y≤10
,则z=2x-y的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
x+y+5≥0
x-y≤0
y≤0
,则z=2x+4y的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件:
x+y≥3
x-y≥-1
2x-y≤3
.则目标函数z=2x+3y的最小值为(  )

查看答案和解析>>

同步练习册答案