精英家教网 > 高中数学 > 题目详情
11.已知f(x)=asin(πx+α)+bcos(πx+β)+4(α、β、a、b为非零实数),f(2014)=5,则f(2015)等于(  )
A.3B.5C.1D.不能确定

分析 直接利用诱导公式化简,整体代入求解即可.

解答 解:f(x)=asin(πx+α)+bcos(πx+β)+4(α、β、a、b为非零实数),f(2014)=5,
可得:asin(2014π+α)+bcos(2014π+β)+4=5,
即:asinα+bcosβ=1,
f(2015)=asin(2015π+α)+bcos(2015π+β)+4=-asinα-bcosβ+4=-1+4=3.
故选:A.

点评 本题考查诱导公式的应用,三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求点A(2,1)与B(1,-2)之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.四面体ABCD中,AB⊥BC,AD⊥面ABC,AD=$\sqrt{7}$,AB=3,BC=4,此四面体的外接球的表面积为(  )
A.28πB.32πC.36πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=x3-3x2+2,函数g(x)=$\left\{\begin{array}{l}{-(x+3)^{2}+1,x<0}\\{(x-\frac{1}{2})^{2}+1,x≥0}\end{array}\right.$,则关于x的方程g[f(x)]-a=0(a>0)的实根最多有(  )
A.4个B.5个C.6个D.7个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2-2x+m的图象经过第一,二,三,四象限,则实数m的取值范围是-$\frac{10}{3}$<m<$\frac{7}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线x2-ky2=1的一个焦点是($\sqrt{5}$,0),则k=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知($\sqrt{x}$+$\frac{2}{x^2}$)n的展开式中,只有第六项的二项式系数最大
(1)求该展开式中常数项;
(2)求展开式中系数最大的项为第几项?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知z∈C,且|z-2-2i|=1,则|z|的最小值为2$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={0,1,-1},B={x|x2-2x-3=0},则A∩B=(  )
A.{-1}B.{1}C.{0}D.

查看答案和解析>>

同步练习册答案