精英家教网 > 高中数学 > 题目详情

(本题满分12分)设正项数列的前项和,且满足.
(Ⅰ)计算的值,猜想的通项公式,并证明你的结论;
(Ⅱ)设是数列的前项和,证明:.

(Ⅰ).猜想,用数学归纳法证明;(Ⅱ)先利用数列知识求和,然后利用放缩法证明或者利用数学归纳法证明

解析试题分析:(Ⅰ)当n=1时,,得,得
,得.猜想                2’
证明:(ⅰ)当n=1时,显然成立.
(ⅱ)假设当n=k时,                       1’
则当n=k+1时,
结合,解得                   2’
于是对于一切的自然数,都有             1’
(Ⅱ)证法一:因为,         3’
  .3’
证法二:数学归纳法
证明:(ⅰ)当n=1时,           1’
(ⅱ)假设当n=k时,            1’
则当n=k+1时,
要证:
只需证:
由于
所以               3’
于是对于一切的自然数,都有               1’
考点:本题考查了数学归纳法的运用
点评:运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在等比数列中,已知,公比,等差数列满足.
(Ⅰ)求数列的通项公式;
(Ⅱ)记,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足:(其中常数).
(1)求数列的通项公式;
(2)当时,数列中是否存在不同的三项组成一个等比数列;若存在,求出满足条件的三项,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列,其前项和,数列 满足
( 1 )求数列的通项公式;
( 2 )设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,前项的和为,对任意的总成等差数列.
(1)求的值并猜想数列的通项公式
(2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)的图象经过点(1,λ),且对任意x∈R,
都有f(x+1)=f(x)+2.数列{an}满足
(1)当x为正整数时,求f(n)的表达式;(2)设λ=3,求a1+a2+a3+…+a2n
(3)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列 的前项和为,设,且.
(1)证明{}是等比数列;
(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,且点在直线上。
(1)求数列的通项公式;
(2)求函数的最小值;
(3)设表示数列的前项和。试问:是否存在关于的整式,使得
对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知数列满足,数列满足
数列满足.
(1)若,证明数列为等比数列;
(2)在(1)的条件下,求数列的通项公式;
(3)若,证明数列的前项和满足

查看答案和解析>>

同步练习册答案