(本题满分12分)设正项数列的前项和,且满足.
(Ⅰ)计算的值,猜想的通项公式,并证明你的结论;
(Ⅱ)设是数列的前项和,证明:.
(Ⅰ);;.猜想,用数学归纳法证明;(Ⅱ)先利用数列知识求和,然后利用放缩法证明或者利用数学归纳法证明
解析试题分析:(Ⅰ)当n=1时,,得;,得;
,得.猜想 2’
证明:(ⅰ)当n=1时,显然成立.
(ⅱ)假设当n=k时, 1’
则当n=k+1时,
结合,解得 2’
于是对于一切的自然数,都有 1’
(Ⅱ)证法一:因为, 3’
.3’
证法二:数学归纳法
证明:(ⅰ)当n=1时,,, 1’
(ⅱ)假设当n=k时, 1’
则当n=k+1时,
要证:
只需证:
由于
所以 3’
于是对于一切的自然数,都有 1’
考点:本题考查了数学归纳法的运用
点评:运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
科目:高中数学 来源: 题型:解答题
已知数列满足:(其中常数).
(1)求数列的通项公式;
(2)当时,数列中是否存在不同的三项组成一个等比数列;若存在,求出满足条件的三项,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)的图象经过点(1,λ),且对任意x∈R,
都有f(x+1)=f(x)+2.数列{an}满足.
(1)当x为正整数时,求f(n)的表达式;(2)设λ=3,求a1+a2+a3+…+a2n;
(3)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列中,且点在直线上。
(1)求数列的通项公式;
(2)求函数的最小值;
(3)设表示数列的前项和。试问:是否存在关于的整式,使得
对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知数列满足,数列满足,
数列满足.
(1)若,证明数列为等比数列;
(2)在(1)的条件下,求数列的通项公式;
(3)若,证明数列的前项和满足。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com