精英家教网 > 高中数学 > 题目详情

如图所示,已知抛物线E:y2=x与圆M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四个点.

(1)求r的取值范围;
(2)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.

(1)(,4)  (2)(,0)

解析解:(1)将y2=x代入(x-4)2+y2=r2,
并化简得x2-7x+16-r2=0,①
E与M有四个交点的充要条件是方程①有两个不等的正根x1,x2,
由此得
解得<r2<16.
又r>0,
所以r的取值范围是(,4).
(2)不妨设E与M的四个交点的坐标为:
A(x1,)、B(x1,-)、C(x2,-)、D(x2,).
则直线AC、BD的方程分别为
y-=·(x-x1),
y+=(x-x1),
解得点P的坐标为(,0).
设t=,
由t=及(1)知0<t<.
由于四边形ABCD为等腰梯形,
因而其面积S=(2+2)·|x2-x1|.
则S2=(x1+x2+2)[(x1+x2)2-4x1x2].
将x1+x2=7,=t代入上式,
并令f(t)=S2,
得f(t)=(7+2t)2·(7-2t)(0<t<).
求导数,f′(t)=-2(2t+7)(6t-7),
令f′(t)=0得t=,t=-(舍去),
当0<t<时,f′(t)>0;
<t<时,f′(t)<0.
故当且仅当t=时,f(t)有最大值,
即四边形ABCD的面积最大.
故所求的点P的坐标为(,0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知双曲线=1的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于A、B两点,F1为左焦点.
(1)求双曲线的方程;
(2)若△F1AB的面积等于6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知椭圆C1:+=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M在点N的右侧),且|MN|=3,已知椭圆D:+=1(a>b>0)的焦距等于2|ON|,且过点(,).

(1)求圆C和椭圆D的方程;
(2)若过点M斜率不为零的直线l与椭圆D交于A、B两点,求证:直线NA与直线NB的倾斜角互补.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求·的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:+=1(a>b>0)的焦距为4,且过点P(,).
(1)求椭圆C的方程;
(2)设Q(x0,y0)(x0y0≠0)为椭圆C上一点.过点Q作x轴的垂线,垂足为E.取点A(0,2),连接AE,过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,直线是直线上的线段,且是椭圆上一点,求面积的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点在椭圆:上,以为圆心的圆与轴相切于椭圆的右焦点,且,其中为坐标原点.
(1)求椭圆的方程;
(2)已知点,设是椭圆上的一点,过两点的直线轴于点,若, 求直线的方程;
(3)作直线与椭圆:交于不同的两点,,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

P(x0,y0)(x0≠±a)是双曲线E:-=1(a>0,b>0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为.
(1)求双曲线的离心率.
(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足+,求λ的值.

查看答案和解析>>

同步练习册答案