精英家教网 > 高中数学 > 题目详情

P(x0,y0)(x0≠±a)是双曲线E:-=1(a>0,b>0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为.
(1)求双曲线的离心率.
(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足+,求λ的值.

(1)    (2) λ=0或λ=-4

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,已知抛物线E:y2=x与圆M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四个点.

(1)求r的取值范围;
(2)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆C:+y2=1(a>1)的上顶点为A,离心率为,若不过点A的动直线l与椭圆C相交于P,Q两点,且·=0.

(1)求椭圆C的方程.
(2)求证:直线l过定点,并求出该定点N的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:+=1(a>b>0)的一个顶点A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程.
(2)当△AMN的面积为时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)的焦距为,且过点(),右焦点为.设上的两个动点,线段的中点的横坐标为,线段的中垂线交椭圆两点.

(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的离心率为,且经过点过坐标原点的直线均不在坐标轴上,与椭圆M交于A、C两点,直线与椭圆M交于B、D两点
(1)求椭圆M的方程;
(2)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线C:的离心率为,左顶点为(-1,0)。
(1)求双曲线方程;
(2)已知直线x-y+m=0与双曲线C交于不同的两点A、B,且线段AB的中点在圆上,求m的值和线段AB的长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题:方程所表示的曲线为焦点在轴上的椭圆;命题:实数满足不等式.
(1)若命题为真,求实数的取值范围;
(2)若命题是命题的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线与圆相切,且交椭圆两点,c是椭圆的半焦距, 
(1)求m的值;
(2)O为坐标原点,若,求椭圆的方程;
(3)在(2)的条件下,设椭圆的左右顶点分别为A,B,动点,直线与直线分别交于M,N两点,求线段MN的长度的最小值 

查看答案和解析>>

同步练习册答案