精英家教网 > 高中数学 > 题目详情

已知圆,直线与圆相切,且交椭圆两点,c是椭圆的半焦距, 
(1)求m的值;
(2)O为坐标原点,若,求椭圆的方程;
(3)在(2)的条件下,设椭圆的左右顶点分别为A,B,动点,直线与直线分别交于M,N两点,求线段MN的长度的最小值 

(1);(2);(3)

解析试题分析:本题主要考查圆的标准方程、椭圆的标准方程、直线的标准方程、直线与圆的位置关系、直线与椭圆的位置关系等基础知识,考查数形结合思想,考查转化能力和计算能力 第一问,利用直线与圆相切,利用圆心到直线的距离为半径,列出等式,求出;第二问,直线与椭圆相交,两方程联立,消参,得到关于的方程,利用两根之和,两根之积和向量的数量积联立,得到,从而求出椭圆的方程;第三问,设直线的斜率,设出直线的方程,直线与椭圆联立,消参,利用两根之积,得到的值,则可以用表示坐标,利用点坐标,求出直线的方程,直线的方程与直线联立,求出点坐标,利用两点间距离公式,得到的表达式,利用均值定理求出最小值 
试题解析:(Ⅰ)直线与圆相切,所以
                             4分
(Ⅱ) 将代入得
得:


因为           ②
由已知代人(2)
所以椭圆的方程为                   8分
(Ⅲ)显然直线AS的斜率存在,设为
依题意,由得:

,又B(2,0)所以  BS:
 
所以时:                          12分
考点:1 点到直线的距离;2 向量的数量积;3 韦达定理;4 均值定理 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

P(x0,y0)(x0≠±a)是双曲线E:-=1(a>0,b>0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为.
(1)求双曲线的离心率.
(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足+,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆C:=1(a>b>0)过点(0,4),离心率为.
(1)求C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆M=1(a>)的右焦点为F1,直线lxx轴交于点A,若=2 (其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆Nx2+(y-2)2=1的任意一条直径(EF为直径的两个端点),求·的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

命题:方程表示的曲线是焦点在y轴上的双曲线,命题:方程无实根,若为真,为真,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点P(0,-1)是椭圆C1=1(a>b>0)的一个顶点,C1的长轴是圆C2x2y2=4的直径.l1l2是过点P且互相垂直的两条直线,其中l1交圆C2AB两点,l2交椭圆C1于另一点D.

(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在坐标原点O,左顶点,离心率为右焦点,过焦点的直线交椭圆两点(不同于点).
(1)求椭圆的方程;
(2)当的面积时,求直线PQ的方程;
(3)求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知离心率为的椭圆()过点 
(1)求椭圆的方程;
(2)过点作斜率为直线与椭圆相交于两点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点为F2(1,0),点 在椭圆上.

(1)求椭圆方程;
(2)点在圆上,M在第一象限,过M作圆的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由.

查看答案和解析>>

同步练习册答案