如图,点P(0,-1)是椭圆C1:
=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.![]()
(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.
科目:高中数学 来源: 题型:解答题
椭圆
的离心率为
,且经过点
过坐标原点的直线
与
均不在坐标轴上,
与椭圆M交于A、C两点,直线
与椭圆M交于B、D两点
(1)求椭圆M的方程;
(2)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,F是椭圆的右焦点,以点F为圆心的圆过原点O和椭圆的右顶点,设P是椭圆上的动点,P到椭圆两焦点的距离之和等于4.![]()
(1)求椭圆和圆的标准方程;
(2)设直线l的方程为x=4,PM⊥l,垂足为M,是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
,直线
与圆
相切,且交椭圆
于
两点,c是椭圆的半焦距,
(1)求m的值;
(2)O为坐标原点,若
,求椭圆
的方程;
(3)在(2)的条件下,设椭圆
的左右顶点分别为A,B,动点
,直线
与直线
分别交于M,N两点,求线段MN的长度的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设椭圆
:![]()
的离心率
,顶点
的距离为
,
为坐标原点.![]()
(1)求椭圆
的方程;
(2)过点
作两条互相垂直的射线,与椭圆
分别交于
两点.
(ⅰ)试判断点
到直线
的距离是否为定值.若是请求出这个定值,若不是请说明理由;
(ⅱ)求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
=1(a>b>0)的上,下两个顶点为A,B,直线l:y=-2,点P是椭圆上异于点A,B的任意一点,连接AP并延长交直线l于点N,连接PB并延长交直线l于点M,设AP所在的直线的斜率为k1,BP所在的直线的斜率为k2.若椭圆的离心率为
,且过点A(0,1).![]()
(1)求k1·k2的值;
(2)求MN的最小值;
(3)随着点P的变化,以MN为直径的圆是否恒过定点?若过定点,求出该定点;如不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心为平面直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.
(1)求椭圆C的方程;
(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的一点,
=λ,求点M的轨迹方程,并说明轨迹是什么曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面五边形
关于直线
对称(如图(1)),
,
,将此图形沿
折叠成直二面角,连接
、
得到几何体(如图(2))![]()
(1)证明:
平面
;
(2)求平面
与平面
的所成角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com