精英家教网 > 高中数学 > 题目详情
已知映射f:(a,b)→(x1x2,|x1-x2|),其中x1,x2(x1,x2∈C)是方程x2+ax+b=0(a,b∈R)的两根,则(2,1)的像为    ,(2,1)的原像为   
【答案】分析:先求出映射f:(a,b)→( b,),令a=2,b=1 可得(2,1)的像; 由 可得 ,可得(2,1)的原像.
解答:解:由题意可得 x1+x2=-a,x1•x2=b,|x1-x2|==
  故映射f:(a,b)→(b,|x1-x2|),即映射f:(a,b)→( b,),
令a=2,b=1 可得  (2,1)的像( b,)=(1,0).
 可得 ,故(2,1)的原像为 (±3,2).
故答案为 (1,0),(±3,2).
点评:本题考查映射的定义,像和原像的定义,求出映射f:(a,b)→( b,),是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知映射f:(a,b)→(x1x2,|x1-x2|),其中x1,x2(x1,x2∈C)是方程x2+ax+b=0(a,b∈R)的两根,则(2,1)的像为
 
,(2,1)的原像为
 

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省高一上学期10月月考数学卷 题型:选择题

已知映射fAB, A=B=R,对应法则fxy = –x2+2x,对于实数kB在A中没有原象,则k的取值范围是 (    )

A.k>1              B.k≥1            C.k<1          D.k≤2

 

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省沈阳二中高一上学期10月月考数学卷 题型:单选题

已知映射fAB, A=B=R,对应法则fxy = –x2+2x,对于实数kB在A中没有原象,则k的取值范围是 (    )

A.k>1B.k≥1 C.k<1D.k≤2

查看答案和解析>>

科目:高中数学 来源:2009-2010学年度新课标高一上学期数学单元测试1-集合与集合的表示方法 题型:选择题

 已知映射fAàB,A=B=R,对应法则fxày=–x2+2x,对于实数k∈B在A中没有原象,则k的取值范围是                            (    )

        A.k>1      B.k≥1     C.k<1      D.k≤2

 

查看答案和解析>>

同步练习册答案