精英家教网 > 高中数学 > 题目详情
(2012•湖南模拟)函数f(x)=x2+|x-a|-1
(1)若a=0,则方程f(x)=0的解为
x=
5
-1
2
或x=
1-
5
2
x=
5
-1
2
或x=
1-
5
2

(2)若函数f(x)有两个零点,则a的取值范围是
(-
5
4
5
4
(-
5
4
5
4
分析:(1)若a=0,解方程 x2+|x|-1=0,解得|x|的值,即可得到方程f(x)=0的解.
(2)由题意可得函数y=x2-1的图象 与函数y=-|x-a|的图象有两个交点,当-1≤a≤1 时,结合图象可得满足条件.
当当y=-|x-a|的图象(两条射线)与函数y=x2-1的图象相切时,求得a=-
5
4
,或a=
5
4
,结合图象可得a的取值范围.
解答:解:(1)若a=0,则方程f(x)=0即 x2+|x|-1=0,解得|x|=
-1+
5
2

∴x=
-1+
5
2
,或 x=
1-
5
2

故答案为  x=
-1+
5
2
,或 x=
1-
5
2

(2)由于f(x)=x2+|x-a|-1=0有两个零点,故函数y=x2-1的图象 与函数y=-|x-a|的图象有两个交点.
如图所示:
当-1≤a≤1 时,显然函数y=x2-1的图象 与函数y=-|x-a|的图象有两个交点.
当y=-|x-a|的图象(两条射线)与函数y=x2-1的图象相切时,
y=x2-1
y=x-a
 有唯一解,或
y=x2-1
y=-x+a
有唯一解.
故 x2+x-a-1=0 有唯一解,或  x2-x+a-1=0 有唯一解.
1=1+4a+4=0,或△2=1-4a+4=0.  解得 a=-
5
4
,或a=
5
4

结合图象可得-
5
4
<a<
5
4

故答案为 (-
5
4
5
4
 ).
点评:本题主要考查函数的零点与方程的根的关系,带有绝对值的函数,体现了化归与转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知函数f(x)=
1
2
x2+x-(x+1)ln(x+1)

(1)判断f(x)的单调性;
(2)记φ(x)=f′(x-1)-k(x-1),若函数φ(x)有两个零点x1,x2(x1<x2),求证:φ′(
x1+x2
2
)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知向量
m
=(2cos2x,
3
),
n
=(1,sin2x)
,函数f(x)=
m
n

(1)求函数f(x)的对称中心;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=3,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)设函数y=f(x)在区间(a,b)的导函数f′(x),f′(x)在区间(a,b)的导函数f″(x),若在区间(a,b)上的f″(x)<0恒成立,则称函数f(x)在区间(a,b)上为“凸函数”,已知f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
,若当实数m满足|m|≤2时,函数f(x)在区间(a,b)上为“凸函数”,则b-a的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知函数f(x)=
-x-1(x<-2)
x+3(-2≤x≤
1
2
)
5x+1(x>
1
2
)
(x∈R),
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;命题q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)设曲线y=xn+1(n∈N)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1•x2•x3•…•x2012的值为
1
2013
1
2013

查看答案和解析>>

同步练习册答案