分析 (1)根据平行向量的运用法则建立关系,利用正弦定理即可求角B的大小.
(2)角B的平分线与AC边交于点D,根据角B的大小,求出∠CBD,以及C的角的大小,可得∠BCD
结合正弦定理可得BC,BD=2,即可求△ABC的面积.
解答 解:由题意,$\overrightarrow{m}$∥$\overrightarrow{n}$
可得:(a+b)(sinA-sinB)-($\sqrt{3}a-c$)sinC=0,
由正弦定理可得:(a+b)(a-b)-($\sqrt{3}a-c$)=0,即${a}^{2}+{c}^{2}-{b}^{2}=\sqrt{3}ac$
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}=\frac{\sqrt{3}}{2}$,
∵0<B<π,
∴B=$\frac{π}{6}$
(2)由题意,角B的平分线与AC边交于点D,B=$\frac{π}{6}$
在△BCD中,可得∠DBC=$\frac{1}{2}×\frac{π}{6}$=$\frac{π}{12}$,C=$π-\frac{π}{6}-\frac{π}{6}=\frac{2π}{3}$
∴∠BCD=$π-\frac{π}{12}-\frac{2π}{3}=\frac{π}{4}$
由$\frac{BC}{sin∠BDC}=\frac{BD}{sinC}$,可得:BC=$\frac{2×sin\frac{π}{4}}{\frac{\sqrt{3}}{2}}=\frac{2\sqrt{6}}{3}$,
∵A=$\frac{π}{6}$,∠ABC=$\frac{π}{6}$,
∴AC=BC=$\frac{2\sqrt{6}}{3}$,
∴${S}_{△ABC}=\frac{1}{2}BC•AC•sinC=\frac{2\sqrt{3}}{3}$.
点评 本题主要考察了正余弦定理的综合运用能力和计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com