【题目】已知函数.
(1)令,讨论的单调性;
(2)若,求a的取值范围.
【答案】(1)函数当时在上单调递减;当时在单调递增,在单调递减.(2)
【解析】
(1)表示的解析式,先确定定义域,再对其求导,利用分类讨论a的正负,解大于零和小于零的不等式,求得范围对应为增区间与减区间;
(2)等价于,利用(1)中的单调性结果,利用分类讨论思想表示,使其小于等于0,解得对应a的取值范围,综上分类讨论结果,求得答案.
(1)由题可知,定义域为
所以
当时,即,则在上单调递减;
当时,令得(负根舍去).
令得;令得,
所以在单调递增,在单调递减,
综上所述,函数当时在上单调递减;当时在单调递增,在单调递减.
(2),即.
当时,,符合题意,
当时,由(1)可知,
,,,.
当时,在上单调递减,
且与的图象在上只有一个交点,
设此交点为,则当时,,
故当时,不满足.
综上,a的取值范围为.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中, ,动点满足:以为直径的圆与轴相切.
(1)求点的轨迹方程;
(2)设点的轨迹为曲线,直线过点且与交于两点,当与的面积之和取得最小值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义上的函数,则下列选项不正确的是( )
A.函数的值域为
B.关于的方程有个不相等的实数根
C.当时,函数的图象与轴围成封闭图形的面积为
D.存在,使得不等式能成立
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,,分别是的上顶点和下顶点.
(1)若,是上位于轴两侧的两点,求证:四边形不可能是矩形;
(2)若是的左顶点,是上一点,线段交轴于点,线段交轴于点,,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设各项均为正数的数列的前项和为,已知,且对一切都成立.
(1)当时.
①求数列的通项公式;
②若,求数列的前项的和;
(2)是否存在实数,使数列是等差数列.如果存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某销售公司在当地、两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了、两家超市往年同期各50天的该食品销售记录,得到如下数据:
销售件数 | 8 | 9 | 10 | 11 |
频数 | 20 | 40 | 20 | 20 |
以这些数据的频数代替两家超市的食品销售件数的概率,记表示这两家超市每日共销售食品件数,表示销售公司每日共需购进食品的件数.
(1)求的分布列;
(2)以销售食品利润的期望为决策依据,在与之中选其一,应选哪个?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com