精英家教网 > 高中数学 > 题目详情
(本题满分13分)一艘轮船在航行中每小时的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时8元,而其他与速度无关的费用是每小时128元.
(1)求轮船航行一小时的总费用与它的航行速度(公里/小时)的函数关系式;
(2)问此轮船以多大的速度航行时,能使每公里的总费用最少?
(1)  (2) 此轮船以20公里/小时的速度行驶时每公里的费用总和最小

试题分析:(1)设船速度为x公里/小时(x>0)时,燃料费用为Q元, (1分)则 (2分)
     
.(6分)
(2)由(1)知,每公里的总费用   (9分)
  (10分)  令,得 
 
∴当x=20时,y取得最小值  (11分)
∴此轮船以20公里/小时的速度行驶时每公里的费用总和最小.(13分)
点评:结合已知的条件,得到函数的模型结合导数的知识判定单调性,得到最值的求解,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)设函数
(1)画出函数y=f(x)的图像;
(2)若不等式,(a¹0,a、bÎR)恒成立,求实数x的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=则f(f(-4))=______。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)设,证明:在区间内存在唯一的零点;
(2)设为偶数,,求的最小值和最大值;
(3)设,若对任意,有,求的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的价格(标价)出售. 问:
(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?
(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设偶函数的定义域为R,当时,是增函数,则的大小关系是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域为的函数对任意都有,且其导函数满足,则当时,有( )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数,其中e是自然数的底数,
(1)当时,解不等式
(2)当时,求正整数k的值,使方程在[k,k+1]上有解;
(3)若在[-1,1]上是单调增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知上是减函数,则满足的实数的取值范围是(     ).
A.(-∞,1)B.(2,+∞)
C.(-∞,1)∪(2,+∞) D.(1,2)

查看答案和解析>>

同步练习册答案